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Abstract

Predicting the destination of a protein in a cell is important for annotating the
function of the protein. Recent advances have allowed us to develop more accurate
methods for predicting the subcellular localization of proteins. One of the most
important factors for improving the accuracy of these methods is related to the
introduction of new useful features for protein sequences. In this paper we present
a new method for extracting appropriate features from the sequence data by com-
puting pairwise sequence alignment scores. As a classifier, support vector machine
(SVM) is used. The overall prediction accuracy evaluated by the jackknife valida-
tion technique reached 94.70% for the eukaryotic non-plant data set and 92.10% for
the eukaryotic plant data set, which is the highest prediction accuracy among the
methods reported so far with such data sets. Our experimental results confirm that
our feature extraction method based on pairwise sequence alignment is useful for
this classification problem.
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1 Introduction

Cellular organelles in a eukaryotic cell require a continuous supply of appropri-
ate proteins to make and maintain themselves. Proteins encoded in the nuclear
genome are synthesized on ribosomes in the cytosol and are delivered to the
organelles in which they are required. Here, we do not consider the proteins
that are synthesized on ribosomes inside the mitochondria and chloroplasts
because they are not delivered to other organelles. The delivery of a protein
to the ER, mitochondria, and chloroplasts, depends on the N-terminal signal
sequence. The N-terminal signal sequence, located at the N-terminus, is a con-
tinuous stretch of amino acid sequence which determines the proper cellular
location. Since the signal sequence specifying the same destination is not well
conserved, it is generally thought that the factors determining the destina-
tion are physico-chemical properties such as hydrophobicity or the position of
charged amino acids (Alberts et al., 1998).

Predicting the destination of an unknown protein is important for inferring the
possible function of the protein. Therefore, in recent years, numerous meth-
ods in computational biology have been developed to improve the prediction
accuracy. In fact, this is a classification problem that has been extensively
studied in machine learning, pattern recognition, and statistics communities,
since class labels related to cellular locations are already available in a set of
training data. Various classifiers including artificial neural networks (ANN),
support vector machines (SVM), and k-nearest neighbor algorithm (k-NN),
have been applied to this classification problem. However, one of the most
critical factors for improving the prediction accuracy, involves a way of feature
extraction. Most of prediction methods can be divided into two approaches,
depending on their ways of feature extraction: (1) features based on protein
sequence data; (2) features based on ontology data.

In the protein sequence-based approach, two popular feature extraction meth-
ods include: (1) methods involving the recognition of N-terminal signal se-
quences; (2) methods involving the detection of amino acids compositions from
an entire sequence. The former has the strong biological implication because
the signal sequence specifying the cellular location of a protein is located
at the N-terminus (Emanuelsson et al., 2000; Reczko and Hatzigerrorgiou,
2004). However, it is difficult to recognize underlying features from a highly
diverged signal sequence and to vectorize those features. The latter approach
partially overcomes these difficulties, but loses the information regarding the
context stored in the sequence data (Bhasin and Raghava, 2004; Hua and
Sun, 2001; Reinhardt and Hubbard, 1998). The ontology-based approach has
received much attention recently because of its high prediction accuracy (Cai
and Chou, 2004; Lu et al., 2004). This approach extracts the text information
of homologous sequences of a target sequence by searching biological data-
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bases, and vectorizes this information. It is not surprising for this approach to
show good performance because it utilizes various extra information derived
from several sources.

In this paper, we propose a new method for extracting appropriate features
from the sequence data to predict cellular locations of proteins. To this end, we
introduce a pairwise sequence alignment score such that a protein sequence
is presented to a SVM classifier as a vector. Our experimental results con-
firm that our feature extraction method considerably improves the prediction
accuracy.

2 Systems and methods

2.1 Data sets

We used two data sets for training and evaluating our prediction system. These
data sets were generated by Emanuelsson et al. (2000). All sequences in the two
data sets were extracted from SWISS-PROT release 36, 37, or 38, and their
cellular locations were chosen by referring annotations in FT or CC field. In the
preprocessing step, all sequences containing ambiguous amino acids such as
B, Z, or X were excluded, and sequences with high similarities were removed
for redundancy reduction. As shown in Table 1, these data sets consist of
940 eukaryotic plant sequences with four classes (chloroplast, mitochondrion,
extracellular, and other) and 2738 eukaryotic non-plant sequences with three
classes (mitochondrion, extracelluar, and other).

2.2 Pairwise sequence alignment as a feature extractor

Representation of a protein sequence by the scores of pairwise sequence align-
ments (SA) was already used in the SVM-pairwise for detecting remote struc-
tural and evolutionary relationships (Liao and Noble, 2003). In some aspects,
the SVM-pairwise is directly analogous to our prediction system. In the feature
extraction step, the SVM-pairwise vectorizes a protein sequence by comput-
ing pairwise sequence similarity scores between the target sequence and all
sequences in the training set. The resulting vectors are then used as the input
to SVM for classification.

The main distinction between the SVM-pairwise and our method, is in the lo-
cality of the pairwise-sequence alignment. The SVM-pairwise uses the Smith-
Waterman algorithm (Smith and Waterman, 1981) for finding the optimal
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local alignment because the global SA of two very highly diverged sequences is
not possible. In contrast, our prediction system uses the Needleman-Wunsch
algorithm (Needleman and Wunsch, 1970) for obtaining the optimal global

alignment. In order to consider only N-terminal signal sequences, all sequences
were truncated after first 90 residues such that every sequence has the same
length. It is believed that the whole N-terminal sequences are important in
determining cellular locations. Therefore, it is desirable to use the global dy-
namic programming algorithm.

For the global dynamic programming algorithm, we used Matlab functions
that are available at http://www.cs.cornell.edu/courses/cs321/2001fa/matlab
examples.html. A d-dimensional feature vector xk for the kth protein sequence
has the form

xk = [xk1, xk2, · · · , xkd]
⊤ , (1)

where ⊤ denotes the matrix or vector transpose operator and xki represents
the score of the Needleman-Wunsch algorithm between the kth sequence and
the ith sequence in the training set. Note that d is equal to the total number
of sequences in the training set. The gap penalty is -3 and the substitution
matrix is BLOSUM 50.

Table 1
The number of sequences in each cellular location of eukaryotic plant and non-plant
data sets. (Emmanuelsson et al., 2000)

Species Cellular location # of sequences

Eukaryotic Chloroplast (cTP) 141

Plant Mitochondirial (mTP) 368

Extracellular (SP) 269

Cytoplasmic + Nuclear (Other) 162

Eukaryotic Mitochondirial (mTP) 371

Non-plant Extracellular (SP) 715

Cytoplasmic + Nuclear (Other) 1652

2.3 Support vector machine as a classifier

SVM classifiers have recently been used as popular and powerful tools for clas-
sification, due to their strong theoretical origin at statistical learning theory
as well as their high performance in practical applications(Hearst et al., 1998;
Cristianini and Shawe-Taylor, 2000). SVM classifiers are kernel-based learning
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algorithms, determining the optimal hyperplane decision boundary in the fea-
ture space. In kernel-based algorithms, a kernel trick leads us to process the
data in a feature space without the explicit knowledge of a nonlinear mapping
from the data space to a feature space. The high dimensionality of a feature
space might cause the curse of dimensionality. However, the optimal separat-
ing hyperplane with a maximal margin in the feature space, can relieve this
problem. In statistical learning theory, we can minimize the complexity term
of the upper bound of the expected risk by maximizing the margin of the
separating hyperplane. The minimization of the upper bound can be viewed
as relieving the over-fitting problem (Müller et al., 2001). The maximization
of the margin can be formulated as a quadratic optimization program so that
a global solution can be easily obtained.

In the present study, we used OSU SVM Matlab toolbox 3.00 for the SVM clas-
sifier that is freely available at http://www.ece.osu.edu/∼maj/osu svm. The
prediction of the subcellular localization is a multi-class classification problem,
but the SVM classifier can only deal with the binary classification problem.
Therefore, we need to construct a set of binary classifiers for multi-class clas-
sification. We constructed (M − 1)M/2 binary classifiers for M classes. In
this pairwise classification, each possible pair of classes is considered and a
test pattern is classified by the majority voting. This approach has two ad-
vantages over the one versus the rest method. The weak point of the latter
approach is that it compares the real values in outputs of M binary clas-
sifiers directly. Because each binary classifier is trained on different binary
classification problems, their real values in outputs of the classifiers may not
be suitable for comparison. In addition, in the one versus the rest approach,
the numbers of positive and negative training data points are not symmetric.
These two weak points can be solved by the pairwise classification (Schölkopf
and Smola, 2002). The kernel function used in this study is the radial basis

function (RBF) kernel with one parameter γ:

k(x,y) = exp
{

−γ‖x − y‖2
}

. (2)

During the training and testing, only the RBF kernel parameter γ and the
regularization parameter C were considered and the remaining parameters
were kept constant.

2.4 The proposed prediction system

The overall schematic diagram of our prediction system is illustrated in Fig.
1. Every protein sequence in consideration (including target sequence and all
sequences in the training set), is truncated after first 90 residues, such that
only N-terminal signal sequence is taken into account. A target sequence is
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converted into an associated feature vector by computing the scores of the
Needleman-Wunsch algorithm between the target sequence and every sequence
in the training set. The training set can be divided into two parts which are
positive and negative vectorization set. The positive vectorization set means
all sequences in this set belong to the same class with the target sequence. The
negative vectorization set denotes the opposite case. Therefore, the discrim-
inative power of the feature vector is expected to increase, since it contains
the information about positive as well as negative data. After this feature ex-
traction step, we obtain the fixed-length feature vector. Note that the fixed
dimension of the feature vector is equal to the total number of the whole
training set. At the classification step, the feature vector is used as the input
to (M − 1)M/2 binary SVM classifiers for M classes. In this pairwise classifi-
cation, the feature vector is assigned to the class associated with the highest
value in voting.

Protein sequence

Pairwise sequence
alignment

Fixed-length vector of pairwise
alignment scores

SVM classifier

Prediction Result

Positive vectorization set

Negative vectorization set

Fig. 1. The schematic diagram of our proposed system is illustrated. A target protein
sequence is converted into the corresponding feature vector by computing the scores
of the Needleman-Wunsch algorithm between the protein sequence and the whole
sequences in the training data set. The SVM classifier predicts an appropriate class
of the protein sequence.
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2.5 Evaluation of the prediction system

The performance of our prediction system was evaluated using the 5-fold cross-
validation and jackknife validation techniques. In the 5-fold cross-validation,
the whole data set was partitioned into five exclusive subsets, and in turn one
subset was used for the test data and the remaining sets were used for the
training data. In this study, the 5-fold cross-validation was just used for com-
paring the results obtained by this validation technique. For more objective
and rigorous evaluation, we used the jackknife validation. In this technique,
one protein sequence was left out in turn for the test data and the rest was
used for the training data. In our prediction system, the dimension of the
feature vector depends on the validation technique because the dimension is
equal to the number of the training data. To measure the performance, sensi-
tivity, specificity, Matthew’s correlation coefficient (MCC) (Matthews, 1975),
and overall accuracy were calculated using the following equations:

Sensitivity(i) =
tp(i)

tp(i) + fn(i)
, (3)

Specificity(i) =
tp(i)

tp(i) + fp(i)
, (4)

MCC(i) =
tp(i)tn(i) − fp(i)fn(i)

√

de(i)
, (5)

Overall accuracy =

∑

M

i=1
tp(i)

N
, (6)

where

de(i) = (tp(i) + fn(i)) (tp(i) + fp(i))

(tn(i) + fp(i)) (tn(i) + fn(i)) , (7)

and N is the total number of sequences, M is the number of class, tp(i) (true
positive) is the number of correctly predicted sequences of class i, tn(i) (true
negative) is the number of correctly predicted sequences which is not in class
i, fp(i) (false positive) is the number of over predicted sequences of class i,
and fn(i) (false negative) is the number of under predicted sequences of class
i.
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Table 2
Performance comparison of different subcellular localization prediction methods on
the eukaryotic plant data set. In the table, we used 5-fold CV for 5-fold cross vali-
dation, Jackknife for Jackknife validation, categ for catergory, sensit for sesitivity,
and accur for overall accuracy.

method categ sensit specif MCC accur reference

5-fold CV cTP 0.8511 0.8163 0.8003 0.8957 our method

mTP 0.8886 0.9355 0.8536

SP 0.9375 0.9836 0.9435

other 0.8839 0.7654 0.7814

Jackknife cTP 0.8794 0.8794 0.8562 0.9210 our method

mTP 0.9136 0.9535 0.8898

SP 0.9492 0.9918 0.9581

other 0.9290 0.7956 0.8278

5-fold CV cTP 0.85 0.69 0.72 0.853 Emanue-

mTP 0.82 0.90 0.77 lsson et al.

SP 0.91 0.95 0.90 (2000)

other 0.85 0.78 0.77

Jackknife 0.861 Cai-Chou (2004)

3 Results

Prediction results with comparison to some other methods, are summarized
in Table 2 and 3 for the eukaryotic plant and non-plant data, respectively.
Parameters in the SVM classifier, including the kernel width γ and the reg-
ularization parameter C, were selected through the 5-fold cross-validation.
Table 2 shows the results for the eukaryotic plant data through the 5-fold
cross-validation and the jackknife validation. The overall prediction accuracy
(γ = 0.008 andC = 10) evaluated by the 5-fold cross-validation and the jack-
knife validation reached 89.57% and 92.10%, respectively. The accuracy mea-
sured by the jackknife validation was about 6∼7% higher than those by other
prediction methods. The sensitivity, specificity, and MCC for each class were
also improved considerably.

The results for the eukaryotic non-plant data are shown in Table 3. The over-
all accuracy (γ = 0.005 andC = 7) evaluated by the jackknife validation
was 94.70% and the accuracy was about 3∼4% higher than those by other
prediction methods. The MCC for each class was improved significantly.
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Table 3
Performance comparison of different subcellular localization prediction methods on
the eukaryotic non-plant data set.

method categ sensit specif MCC accur reference

5-fold CV mTP 0.8702 0.8824 0.8565 0.9399 our method

SP 0.9216 0.9478 0.9116

other 0.9632 0.9492 0.8859

Jackknife mTP 0.8785 0.8908 0.8662 0.9470 our method

SP 0.9390 0.9557 0.9287

other 0.9656 0.9557 0.8981

5-fold CV mTP 0.89 0.67 0.73 0.900 Emanue-

SP 0.96 0.92 0.92 lsson et al.

other 0.88 0.97 0.82 (2000)

5-fold CV mTP 0.78 0.82 0.77 0.913 Reczko and

SP 0.93 0.91 0.89 Hatzi-georgiou

other 0.93 0.94 0.84 (2004)

Jackknife 0.912 Cai-Chou (2004)

In this study, we evaluated the performance of our prediction system through
two validation techniques. In general, the jackknife validation is more rigorous
and the 5-fold cross-validation is more likely to overestimate. However, our
results were the opposite. The reason is already mentioned above. Because
the dimension of the jackknife validation is higher than that of the 5-fold
cross-validation, the performance of the jackknife validation becomes higher.
The dependency of the performance on the dimension of the feature vector is
shown in Table 4. As the dimension increases, the overall accuracy (γ = 0.005
and C = 7) was improved. The results of Table 4 were measured by the 5-fold
cross-validation for the eukaryotic non-plant data.

In general, the high dimension of the feature vector can cause the over-fitting
problem. Therefore, the high performance of our system may be the over-fitted
result. To relieve this problem, we used SVM as a classifier which can be viewed
as minimizing the complexity term of the upper bound of the expected risk.
In addition, we tested our system through the rigorous validation technique.
Finally, the high positive correlation between the dimension of the feature
vector and the prediction accuracy supports that the high performance of our
system is not the over-fitted result.
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Table 4
Performance of our prediction system for various dimensions of the feature vector
on the eukaryotic non-plant data set.

dimension categ sensit specif MCC accur

75 mTP 0.7044 0.8333 0.7311 0.8829

SP 0.8636 0.8763 0.8221

other 0.9307 0.8945 0.7668

150 mTP 0.7707 0.8506 0.7805 0.9120

SP 0.9115 0.9101 0.8781

other 0.9436 0.9248 0.8276

300 mTP 0.7983 0.8731 0.8096 0.9250

SP 0.9245 0.9286 0.8999

other 0.9534 0.9339 0.8526

600 mTP 0.8315 0.8750 0.8300 0.9336

SP 0.9376 0.9376 0.9150

other 0.9546 0.9442 0.8689

Full mTP 0.8702 0.8824 0.8565 0.9399

SP 0.9216 0.9478 0.9116

other 0.9632 0.9492 0.8859

4 Concluding remarks

We have presented a method for predicting the subcellular localization of
proteins, where features associated with protein sequences were constructed
by the scores of the global alignment (Needleman-Wunsch algorithm) be-
tween only N-terminal signal sequences. The high prediction performance of
our method was verified, using the eukaryotic plant and non-plant data sets,
through 5-fold cross validation as well as the Jackknife validation. The advan-
tages of our prediction system are: (1) the discriminative power of the feature
vector is expected to increase, since it contains the information on positive
as well as negative data; (2) our prediction system has important biological
implications because it considers only N-terminal signal sequences; and (3)
the system is easy to understand and implement. Despite these advantages,
there remain two basic limitations inherent in this approach. First, the vec-
torization of protein sequences is computationally ”expensive”, because it is
based on a dynamic programming algorithm. Second, our prediction system
is not suitable for the discrimination between cytoplasmic and nuclear pro-
teins, since the sorting signals of these protein sequences are not located at
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the N-terminus. Therefore, what remains to be done in the future research is
to extend the proposed system to circumvent these limitations.
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