Molecular and functional characterization of a novel efflux pump, AmvA, mediating antimicrobial and disinfectant resistance in Acinetobacter baumannii

Govindan Rajamohan\(^1,2\), Vijaya Bharathi Srinivasan\(^1\) and Wondwossen A. Gebreyes\(^1\)*

\(^1\)Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Columbus, OH, USA; \(^2\)Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39A, Chandigarh, India

*Corresponding author. Tel: +1-614-292-9559; Fax: +1-614-292-4142; E-mail: gebreyes@cvm.osu.edu

Received 28 February 2010; returned 23 March 2010; revised 4 May 2010; accepted 5 May 2010

Objectives: Acinetobacter baumannii has emerged as an important nosocomial pathogen in hospitalized patients, and causes a multitude of infections with significant morbidity and mortality. The aim of this study was to elucidate the role of a novel efflux pump in \(A. baumannii\).

Methods: The open reading frame ABAYE1518, annotated as a putative Methyl Viologen resistance protein in the genome of strain \(A. baumannii\) AYE, exhibits \(\approx 50\%\) similarity with members of the major facilitator superfamily (MFS) multidrug efflux pumps. The antimicrobial susceptibility profiles of \(Escherichia coli\) KAM32 cells carrying the putative efflux pump were monitored by broth dilution method. Different efflux pump inhibitors were used for fluorimetric efflux assays. The functions of the putative efflux pump were confirmed in \(A. baumannii\) by insertional inactivation and complementation. Its expression in clinical isolates was analysed by reverse transcriptase–PCR.

Results: \(E. coli\) cells carrying the pump had decreased susceptibility to some antibiotics, disinfectants, dyes and detergents, with enhanced efflux activity. The pump was inactivated in a clinical isolate of \(A. baumannii\) AC0037 and further characterization confirmed its role in antimicrobial resistance by active efflux. We found increased expression of the pump in clinical isolates that also exhibited elevated tolerance to antibacterial agents.

Conclusions: This report describes the functions of a novel resistance determinant, a member of the MFS efflux pumps, for the first time in \(A. baumannii\).

Keywords: MFS efflux pumps, drug: \(H^+\) antiporter-2, disinfectant tolerance, nosocomial pathogens

Introduction

The management of infections due to Acinetobacter baumannii is greatly hindered by its intrinsic and acquired resistance to a wide variety of antimicrobial agents.\(^1\) In addition to enzyme-mediated resistance, overexpression of efflux pumps is thought to be an important factor in the multiple resistance phenotype of \(A. baumannii\).\(^2\) In Gram-negative bacteria, a subset of inner membrane proteins in the major facilitator superfamily (MFS) act as efflux pumps to decrease the intracellular concentrations of multiple toxic substrates and confer multidrug resistance.\(^3\)

The MFS drug transporters are classified as: (i) drug: \(H^+\) antiporter-1 (DHA1) family, with 12 transmembrane segments; or (ii) drug: \(H^+\) antiporter-2 (DHA2) family, with 14 transmembrane segments.\(^4\) Well-studied examples such as QacA and NorA of Staphylococcus aureus, KmrA of Klebsiella pneumoniae, and SmvA of Salmonella enterica serovar Typhimurium belong to the latter family.\(^5\)–\(^8\) Though CraA (DHA1 family) has been recently characterized in \(A. baumannii\),\(^9\) the functions of other chromosomally borne DHA2 family efflux pumps are still unknown and this report discusses the unprecedented functions of one such efflux pump.

In our preliminary report, we demonstrated that \(\beta\)-lactamases, aminoglycoside-modifying enzymes, target gene mutations and efflux pumps were responsible for the multidrug-resistant (MDR) behaviour of the clinical strains isolated during 2005 – 07 from central Ohio tertiary care hospitals.\(^10\) \(A. baumannii\) AC0037 is one such MDR isolate from our collection (isolated from the respiratory tract of a patient in Ohio State University Medical Center in central Ohio, in 2007), which displayed decreased susceptibility to fluoroquinolones, \(\beta\)-lactams, aminoglycosides, as well as commercially available disinfectants, dyes and detergents.\(^10\)
Therefore, studies were performed in A. baumannii AC0037 to investigate the contributions of the putative efflux pump belonging to the DHA2 family in conferring antibiotic and disinfectant resistance.

Materials and methods

Bacterial strains, growth media and chemicals

Escherichia coli KAM32 (ΔacrAB ΔydhE) and A. baumannii AC0037 were used for genetic studies. Bacteria were grown at 37°C in Luria-Bertani (LB) and agar (Difco Laboratories, Sparks, USA). Different antibiotics, detergents, dyes and inhibitors used in this study were purchased from Sigma–Aldrich.

Cloning of the putative efflux pump

Genomic DNA from A. baumannii AC0037 was extracted using the DNAeasy Tissue kit (Qiagen, Valencia, CA, USA). The open reading frame (ORF) from A. baumannii AC0037 was amplified using AmvA-F/R primers by PCR as described previously, with minor modifications (Table 1). The PCR products were purified by using the QiaQuick PCR purification kit (Qiagen), digested with PstI and BamHI, and then cloned into similarly digested pUC18 vector. At least two independently generated recombinant plasmids were sequenced bidirectionally using a CEQ 8000 (Beckman Coulter Instruments Inc., Palo Alto, CA, USA) capillary electrophoresis system to rule out mutations introduced during PCR and analysed by BLAST (www.ncbi.nlm.nih.gov). The recombinant plasmid denoted pUC18-AmvA was transformed into E. coli KAM32 to generate E. coli KAM32/pUC18-AmvA.

MICs

MICs were determined according to the guidelines of the CLSI by the broth dilution method in Mueller–Hinton broth (Difco, Sparks, USA).Susceptibility was tested in duplicate and the tests were repeated three times. The MIC values are presented as means and variation about the mean was always <10%. The different classes of disinfectant formulations used were: Virkon-S (an oxidizing agent: peroxygen blend and organic acid) (Antec International, UK); Wex-cide-128 (a phenolic biocide) (Hess & Clark Inc., USA); and Parvosol II RTU (a synergized QAC with inert ingredients) (MP Biomedicals, LLC); and chlorhexidine gluconate (MP Biomedicals, LLC); benzalkonium chloride (a QAC) (MP Biomedicals, LLC); and verapamil and phenyl-arginine-β-naphthylamide (PAβN) (Sigma, St Louis, MO, USA). Efflux inhibitors had no intrinsic antibacterial activity against clinical isolates at the concentration used in the experiments.

Analysis of growth kinetics

The growth inhibition assay was done as described previously, with minor modifications. The efflux pump inhibitors used in this study were carbonyl cyanide 3-chlorophenylhydrazone (CCCP), reserpine, verapamil and phenyl-arginine-β-naphthylamide (PAβN) (Sigma, St Louis, MO, USA).

Accumulation studies

Accumulation of ethidium bromide was monitored as described previously. Briefly, A. baumannii cells were grown to mid-log phase, harvested and suspended in 1× PBS (0.136 M NaCl/0.0026 M KCl/0.01 M Na2HPO4/0.00176 M KH2PO4, pH 7.0) to an optical density at 600 nm (OD600) of 0.2. Ethidium bromide was added at a concentration of 10 mg/L. Aliquots were taken at different time intervals, harvested, suspended in 1 mL of 0.1 M glycine/HCl buffer (pH 2.3) and incubated for 6 h at 37°C. Then, the fluorescence of the supernatant was measured at excitation 530 nm and emission 600 nm. Where indicated, the proton-motive force uncoupler CCCP was added to the assay mixture at a final concentration of 25 mg/L. This assay was also performed using acriflavine as substrate, and the fluorescence of the supernatant was measured at excitation 468 nm and emission 499 nm.

Construction of deletion mutant in MDR strain A. baumannii AC0037

To evaluate the role of amvA in A. baumannii AC0037, attempts were made to generate an amvA deletion mutant. Kanamycin resistance plasmid pCR2.1-TOPO (Invitrogen, Carlsbad, CA, USA), unable to replicate in A. baumannii, was used as a suicide vector. The recombinant plasmid pInt-amvA was introduced into the kanamycin-susceptible, ticarcillin-resistant A. baumannii AC0037 by electrotransformation (Eppendorf, Hamburg, Germany). Selection of the amvA null mutant was made on plates containing 50 mg/L kanamycin and 80 mg/L ticarcillin. Inactivation of the amvA gene by insertion of pInt-amvA was confirmed by PCR amplification and DNA sequencing, and the null mutant was designated as AC0037ΔamvA.

Complementation studies with AmvA deletion mutant

The aadA1 gene was PCR amplified using AC0019 (accession number EU977568.1) as a template DNA with primers aadA1-F/R (Table 1). The amplicon was ligated into the EcoRV site of the shuttle vector pWH1266, transformed into E. coli Top10 cells and selected on LB plates containing 200 mg/L streptomycin. Plasmid DNA from the streptomycin-resistant transformant was denoted as pWH-Spc. The obtained plasmid, pWH-Spc, was modified by cloning a PCR-amplified wild-type amvA gene from A. baumannii strain AC0037 into the PstI site of pWH-Spc, to yield a recombinant plasmid pWH-amvA. Electroporation of the recombinant plasmid pWH-amvA into the A. baumannii AC0037ΔamvA mutant resulted in the AC0037ΔamvAΔamvA mutant. Selection of the complemented mutant was made on plates containing 200 mg/L streptomycin and 50 mg/L kanamycin.

RNA preparation and reverse transcriptase–PCR (RT–PCR) analysis

To detect amvA gene expression, RT–PCR was performed. Total RNA from different clinical isolates grown in LB broth until the exponential growth phase was extracted by using the RNA miniprep kit (Stratagene, La Jolla, CA, USA). The quality of samples was checked electrophoretically and quantification was done spectrophotometrically. Quantification of amvA RNA transcripts was carried out by reverse transcription using

Table 1. Primers used in this study

<table>
<thead>
<tr>
<th>Primer</th>
<th>Primer sequence (5’ to 3’)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmvA-F</td>
<td>GACACTGCGAGGCGAGCTGAGATCATTTCTCT</td>
<td>this study</td>
</tr>
<tr>
<td>AmvA-R</td>
<td>CACGGGATCCATTACCTTCCGAAAACCT</td>
<td>this study</td>
</tr>
<tr>
<td>AmvA-RT</td>
<td>TGATTTCCCTCAATTACCT</td>
<td>this study</td>
</tr>
<tr>
<td>AmvA-RT2</td>
<td>TTACTTCCCTGAAAAACTAACC</td>
<td>this study</td>
</tr>
<tr>
<td>16SrrRNA-F</td>
<td>TCGATGCAAACGGCAGAACAG</td>
<td>this study</td>
</tr>
<tr>
<td>16SrrRNA-R</td>
<td>CGTAAAGGCCATGATGACT</td>
<td>this study</td>
</tr>
<tr>
<td>aadA1-F</td>
<td>ACAGATACATAGGAGAGCGGGTACG</td>
<td>15</td>
</tr>
<tr>
<td>aadA1-R</td>
<td>TACCGTCGACTATTTGGCTACTACCTTGTTGA</td>
<td>15</td>
</tr>
</tbody>
</table>
500 ng of RNase-free DNase-treated total RNA with the Titan One Tube RT–PCR System (Roche Inc., USA). The primers used for amvA (AmvA-RT1/2) and 16S rRNA (16S rRNA-F/R) are shown in Table 1. The RT–PCR was carried out for 25 PCR cycles and cycling parameters were followed according to the manufacturer’s instructions (Roche). The RT–PCR products (10 μL) were analysed by agarose gel electrophoresis (1.5%, w/v) and visualized by ethidium bromide staining. The bands of the amvA gene were subjected to densitometric analysis using the image scanning software Quantity one 4.1.1 (Bio-Rad). The expression levels were standardized relative to the transcription levels of 16S rRNA (a housekeeping gene) for each isolate. Two independent cultures were measured and the results were found to be consistent. As a control for DNA contamination of RNA samples, non-RT reactions (i.e. standard PCRs) were carried out. In no instance was a product obtained in the absence of the RT reaction mixture. P values of <0.05 were considered statistically significant.

Data analysis
The assays were performed in triplicate on independent occasions to confirm reproducibility. All data are presented as means ± SEM.

Results
Cloning of the putative ORF from A. baumannii clinical isolate AC0037
The ORF ABAYE1518, annotated as a putative Methyl Viologen resistance protein in strain A. baumannii AVE (accession number: CU459141.1),20 exhibits 55% identity with Salmonella Typhimurium SmvA (accession number: NP_460533.1). Using the ABAYE1518 gene sequence as template, primers were designed to amplify the ORF from the clinical isolate A. baumannii AC0037. The amplified ORF was designated AmvA (A. baumannii Methyl Viologen and antimicrobial resistance protein).

AmvA was cloned into the pUC18 vector to yield the recombinant plasmid pUC18-AmvA (Table 1). Sequencing revealed one complete ORF (100% identity with ABAYE1518) in the construct. Two independently generated clones were sequenced to ensure authenticity of the sequence. Further analyses revealed that amvA was a 1479 bp gene with a start and stop codon, specifying a 492 amino acid protein with a calculated mass of 52.8 kDa. As per the Basic Local Alignment Search Tool (BLAST) at www.ncbi.nlm.nih.gov, AmvA exhibited different degrees of identity with other MFS transporters, such as SmvA from Salmonella Typhimurium (with 55.2% identity and 76.4% similarity),6 KmA from K. pneumoniae (with 52.1% identity and 74.5% similarity)7 and QoA from S. aureus (with 28.7% identity and 53.5% similarity).5 Multiple sequence alignment using CLUSTAL W21 indicated that AmvA is composed of 14 α-helical transmembrane segments (Figure S1, available as Supplementary data at JAC Online (http://jac.oxfordjournals.org/)) and is a member of the DHA2 transporter family.4

Contributions of the efflux pump AmvA in mediating antimicrobial resistance
To evaluate the role of amvA in antimicrobial resistance, the MICs of various compounds were determined. AmvA-carrying E. coli cells had decreased susceptibility to different classes of antibiotics, disinfectants, detergents and dyes, as shown in Table 2.

Similar increases in the MICs of various antimicrobial compounds were observed on expressing AmvA under the control of an arabinose-inducible (pBAD/Myc-His; Invitrogen, Carlsbad, CA) promoter in E. coli (data not shown). AmvA expression in E. coli was linked to a subtle decrease in antibiotic susceptibility, but to a significant increase in resistance to disinfectants, detergents and dyes.

Growth inactivation profiles of E. coli carrying AmvA
To decipher whether amvA confers resistance via active efflux, screening for a potential efflux phenotype was accomplished by determining the MICs of different substrates (erythromycin, Methyl Viologen and ethidium bromide) in the presence and absence of efflux pump inhibitors (25 mg/L), as described previously.15 The results displayed the following MICs for E. coli KAM32/pUC18-AmvA towards different substrates in the absence of CCCP: 5 mg/L erythromycin; 200 mg/L Methyl Viologen; and 8 mg/L ethidium bromide. The addition of CCCP decreased the MICs of AmvA-carrying cells for the same substrates (2 mg/L erythromycin, 64 mg/L Methyl Viologen and 2 mg/L ethidium bromide) (Figure 1). Similar reductions in the MICs were found upon using PAβN (data not shown). In independent experiments, neither reserpine nor verapamil decreased the MICs (data not shown). Overall, the findings indicated that the amvA gene product conferred decreased susceptibility to various antimicrobial compounds through an active efflux mechanism.

Phenotypic characterization of efflux pump in A. baumannii AC0037
To evaluate the role of amvA in A. baumannii AC0037, attempts were made to generate an amvA deletion mutant. A 792 bp internal fragment was obtained (restriction site at position of 590 and 1376 bp) upon digesting the full-length amvA gene using HindIII (NEB, Beverly, MA, USA). This was subsequently inserted into the pCR2.1-TOPO vector using T4 DNA ligase (NEB) to yield the recombinant plasmid pInt-amvA, which was then inserted into strain AC0037 by electroporation to yield AC0037ΔamvA. Susceptibility testing indicated that the deletion of amvA resulted in increased susceptibility to several of the antibiotics and most of the disinfectants or dyes tested (Table 2). The growth rate of AC0037ΔamvA in the presence of Methyl Viologen, erythromycin, ethidium bromide and TPPCl was abrogated as compared with wild-type AC0037 (data not shown).

Fluorimetric efflux assay using A. baumannii amvA null mutant
To elucidate whether resistance caused by AmvA was due to active efflux, a fluorimetric experiment (using CCCP) to determine the rate of ethidium bromide/acriflavine accumulation (loss of fluorescence indicated efflux activity) was performed. The substrate accumulation data indicated that the efflux was most efficient in the wild-type AC0037 strain, whereas it was less efficient (increased accumulation of 2.5-fold for ethidium bromide and 3.5-fold for acriflavine) in the AC0037ΔamvA mutant (Figure 2). The addition of CCCP increased the ethidium...
bromide/acriflavine levels, which eventually reached a plateau in both AC0037 and AC0037ΔamvA strains (Figure 2). However, upon inactivating a single gene we did not observe a complete loss in the resistance profile. Thus, it is important to state here that other efflux pumps in the genome of the bacteria may also have a role in conferring decreased susceptibility to these agents.

We also tested the effect of monovalent cations, such as Na⁺ and Li⁺, in the efflux process, because the activities of several multidrug efflux pumps are coupled with monovalent cations.22 The addition of either NaCl or LiCl showed no difference in the efflux activity compared with that of the control strain (data not shown). These results pointed to the actual role of the AmvA as a proton-dependent efflux pump that conferred resistance to numerous antimicrobial agents in A. baumannii.

Complementation studies

The role of A. baumannii amvA was confirmed by performing complementation experiments, as described in the Materials and methods section. The expression of amvA in the complemented strain was confirmed at the RNA level (data not shown). Susceptibility testing showed that complementation with the wild-type gene restored the ability of the deletion mutant to confer resistance to several of the antibiotics and most of the disinfectants, dyes and detergents (Table 2). These observations evidently confirmed the contributions of AmvA in mediating antimicrobial resistance in A. baumannii.

Analysis of amvA expression in MDR clinical isolates

PCR amplification of AmvA using genomic DNA clearly indicated the presence of AmvA in all the clinical isolates in our collection (data not shown).

For the current study, a few MDR strains (AC0019, AC0037, AC0045, AC0029, AC0030 and AC0050) were chosen and the expression of AmvA was monitored by RT–PCR. As shown in Figure 3, the expression levels of the amvA gene were higher in drug-resistant strains than in a susceptible strain (AC0030). The results of two independent experiments showed that the relative amvA gene expression was ~2-fold higher in clinical isolate AC0029 (with moderate MICs of ciprofloxacin (<32 mg/L), erythromycin (12 mg/L), Methyl Viologen (256 mg/L) and ethidium bromide (64 mg/L)) (Figure 3) and ~4-fold higher in clinical isolates AC0019, AC0037, AC0045 and AC0050 that exhibited high MICs of ciprofloxacin (>72 mg/L), erythromycin (>32 mg/L), Methyl Viologen (800 mg/L) and ethidium bromide (>512 mg/L) (Figure 3).

Table 2. MICs of various antimicrobial agents for E. coli (KAM32/pUC18 and KAM32/pUC18-AmvA) and A. baumannii (AC0037, AC0037ΔamvA and AC0037ΔamvAΔamvA) strains used in this study

<table>
<thead>
<tr>
<th>Compound</th>
<th>MIC (mg/L) for strains</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E. coli KAM32/pUC18</td>
</tr>
<tr>
<td>Amikacin</td>
<td>1</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.002</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>4</td>
</tr>
<tr>
<td>Minocycline</td>
<td>0.5</td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>1</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Novobiocin</td>
<td>4</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>2</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>0.5</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.125</td>
</tr>
<tr>
<td>Acridine Orange</td>
<td>16</td>
</tr>
<tr>
<td>Acriflavine</td>
<td>2</td>
</tr>
<tr>
<td>Benzalkonium chloride</td>
<td>1</td>
</tr>
<tr>
<td>Chlorhexidine</td>
<td>2</td>
</tr>
<tr>
<td>DAPI</td>
<td>0.5</td>
</tr>
<tr>
<td>Deoxycholate</td>
<td>125</td>
</tr>
<tr>
<td>Ethidium bromide</td>
<td>4</td>
</tr>
<tr>
<td>Methyl Viologen</td>
<td>64</td>
</tr>
<tr>
<td>Pyronin Y</td>
<td>4</td>
</tr>
<tr>
<td>Rhodamine 123</td>
<td>8</td>
</tr>
<tr>
<td>SDS</td>
<td>50</td>
</tr>
<tr>
<td>SDS</td>
<td>8</td>
</tr>
</tbody>
</table>

DAPI, 4’,6-diamidine-2-phenylindole; TPPCl, tetraphenylphosphonium chloride.

ᵃFold change is the ratio of MICs for pUC18-AmvA to pUC18 and MICs for AC0037 to AC0037ΔamvA.
Numerous outbreaks caused by MDR A. baumannii from different parts of the USA are appearing very rapidly.23 Active extrusion by efflux pumps (including members of the MFS family) is thought to be one of the important factors in the multiple resistance phenotype of A. baumannii.24,25 In this study, we characterized the functions of a putative efflux pump designated as AmvA from a clinical strain, A. baumannii AC0037.

Expression of amvA in the heterologous host E. coli KAM32 caused decreased susceptibility to several agents, such as Acriflavin Orange, acriflavine, benzalkonium chloride, DAPI, deoxycholate, ethidium bromide, Methyl Viologen, SDS and TPPCl. Members of the DHA2 family, such as QacA of S. aureus, are known to confer resistance to a wide range of structurally dissimilar monovalent and bivalent cationic antimicrobial compounds.5 KmrA of K. pneumoniae is involved in mediating resistance against acriflavine, DAPI, Hoechst 33342, TPPCl, Methyl Viologen and ethidium bromide.7 LfrA of Mycobacterium smegmatis is known to confer resistance to acriflavine, benzalkonium chloride, ethidium bromide and fluoroquinolones.26

The efflux gene was inactivated in the MDR clinical isolate A. baumannii AC0037 and its role in conferring resistance to

\begin{figure}
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{In vitro inactivation profiles of E. coli KAM32 cells carrying AmvA. The cells of KAM32/pUC18-AmvA and KAM32/pUC18 were grown to mid-log phase (OD\textsubscript{600}=0.2). At this point, the cultures received different concentrations of erythromycin (a), Methyl Viologen (b) and ethidium bromide (c), either alone or in the presence of 25 mg/L CCCP. Ranges of results obtained for the duplicate experiments are shown by error bars.}
\end{figure}

\section*{Discussion}

Numerous outbreaks caused by MDR A. baumannii from different parts of the USA are appearing very rapidly.19-23 Active extrusion by efflux pumps (including members of the MFS family) is thought to be one of the important factors in the multiple resistance phenotype of A. baumannii.24,25 In this study, we characterized the functions of a putative efflux pump designated as AmvA from a clinical strain, A. baumannii AC0037.

Expression of amvA in the heterologous host E. coli KAM32 caused decreased susceptibility to several agents, such as Acriflavin Orange, acriflavine, benzalkonium chloride, DAPI, deoxycholate, ethidium bromide, Methyl Viologen, SDS and TPPCl. Members of the DHA2 family, such as QacA of S. aureus, are known to confer resistance to a wide range of structurally dissimilar monovalent and bivalent cationic antimicrobial compounds.5 KmrA of K. pneumoniae is involved in mediating resistance against acriflavine, DAPI, Hoechst 33342, TPPCl, Methyl Viologen and ethidium bromide.7 LfrA of Mycobacterium smegmatis is known to confer resistance to acriflavine, benzalkonium chloride, ethidium bromide and fluoroquinolones.26

The efflux gene was inactivated in the MDR clinical isolate A. baumannii AC0037 and its role in conferring resistance to
Conclusions

In conclusion, using genetic tools, we have demonstrated the importance of the \textit{amvA} multidrug efflux pump, belonging to the MFS family, in mediating antimicrobial resistance for the first time in an MDR clinical isolate, \textit{A. baumannii} AC0037.

Sequence accession number

The nucleotide sequence data reported in this paper have been deposited in the GenBank nucleotide sequence database under accession number FJ911554.

Acknowledgements

A portion of this work was presented at the Forty-eighth Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, DC, USA, 2008 (Abstract C1-1048).

We would like to thank members of the Infectious Diseases Molecular Epidemiology Laboratory team for technical assistance. We are grateful to Drs Tomofusa Tsujiya, Craig Altier, Preeti Pancholi, Kurt Stevenson and Mario Marcon for graciously providing \textit{E. coli} KAM32, plasmids and \textit{A. baumannii} clinical isolates for this study.

Funding

This work was supported by Ohio State University intramural funding to W. A. G.

Supplementary data

Figure S1 is available as Supplementary data at JAC Online (http://jac.oxfordjournals.org/).

References

