BhairPred: prediction of beta-hairpins in a protein from multiple alignment information using ANN and SVM techniques.
rface accessibility were used instead of the observed structure. The highest accuracy achieved by the SVM based method in the test case was 77.9%. A maximum accuracy of 71.1% with Matthew's correlation coefficient of 0.41 in the test case was obtained on a dataset previously used by X. Cruz, E. G. Hutchinson, A. Shephard and J. M. Thornton (2002) Proc. Natl Acad. Sci. USA, 99, 11157-11162. The performance of the method was also evaluated on proteins used in the '6th community-wide experiment on the critical assessment of techniques for protein structure prediction (CASP6)'. Based on the algorithm described, a web server, BhairPred (http://www.imtech.res.in/raghava/bhairpred/), has been developed, which can be used to predict beta-hairpins in a protein using the SVM approach.