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two-species competition in a batch fermenter*
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A model of two species of microorganisms competing in a spatially heterogeneous batch fermen
is analysed. Using stability conditions without computation, practically useful inferences are: der
about the effects of important parameters such as the maximum specific growth rates and the ino
sizes. A threshold condition is derived for Turing instability, and it is argued that a parametrically
tive population is more likely to jump’ from a stable state to an unstable one, leading to sponta

pattern formation. :

Classical reaction-diffusion theory teaches that dif-
fusion has a stabilising effect on a (biological or
chemical) reaction. Turing’s seminal work! showed
that, under certain conditions, the presence of dif-
fusion can introduce instability, leading to spatial
patterns. Since then, a variety of systems have
been studied and there have been a number of de-
velopments?. _
Turing instability has been shown to occur in
systems as diverse as heterogenous catalysis, the
skins of animals, hallucination in vision, and inter-
actions of microbial populations. In this brief
study, we consider an important and instructive
system of two microbial species competing for the
same nutrient in a batch heterogeneous environ-

ment. Effluent treatment in a lagoon, biogas gener--

ation from animal faeces and the production of
yogurt are some common e¢xamples. In the fer-
mentative production of yogurt, Lactobacillus bul-
garius and Streptococcus thermophilus compete for
the nutrient lactose and both produce lactic acid
as an inhibitor®. Recently Shama* has demonstrat-
ed that a co-culture of Bacillus stearothermophilus
and Clostridium thermocellum produces more eth-
anol and greater conversion of reducing sugars
than Bacillus stearothermophilus alone.

Using well-established models of microbial in-
teraction and diffusion, we show that simple quali-
tative analyses can provide insight into the behav-
iour of the species. We derive inferences about the
effects of parameters on the stability of the homo-
geneous (spatially uniform) system and the onset
of instability through diffusion. It is also suggested
that, as in chemical reactions, environmental fluc-

*IMTECH communication no. 014/ 91

‘tuations which cause small changes in:

ters can destabilise a sensitive populatior
deterministically stable even with diffu

Theory 7 o

In large fermenters, specially those:
non-Newtonian broths, it is well known:
romixing is imperfect and diffusional-
be significant. The dynamics of two mic
isms competing for the same resource’
nonhomogeneous environment without: fl
scribed by two differential equations.
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To the right of the equalities, f, and far
growth (or reaction) terms and,the parti; d

and d are parameters whose significanc
shown.

In the absence of diffusion the homog
state is a simpler version of Eqs (1) and (

E_ v filuy ,uy)
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Eqgs (1) and (2) are subject to the bo
conditions :
du;  du,

BE—?C- at £=0,1



and the initial condition
w=u,=0atr=0 ... (6)

(To account for the biological requirement of fi-
nite initial concentrations of the microorganisms,
, and u, may be considered, without loss of gen-
serality, to be deviations from these starting con-
Feentrations).
Linear stability of the homogeneous steady state
s assured by requiring that Re(,, 1,)<0, where
, and A, are the eigenvalues of the cornmum'ty
#ismatrix of Eqgs (3) and (4). This requirement is met
y spec1fymg two conditions®.

22 <0 -' (7

aul du, OJu, aul

here A is the community matrix.
- For spatial diffusion to cause (Turing) instability,
2qs {7), (8) and two others given below constitute
ecessary and sufficient COIIdlthIlS

+ 25 5 (9)
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- (10)
‘For the growth of two competing spec1es the
unctions f, (u,, u,} and fy(u,, u,) can be specified
ccording to the Lotka-Volterra model. [A recent
pplication has been to a co-culture of Streptococ-
us thermophilus and Lactobacillus bulgaricus®.
hen Eqgs (1)and (2) can be written as:
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T
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— (ﬁlxznul + ﬁzxznuz)j| +d
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lere v=D/1? {=z/L; y=u, L*/d,; u,=x/x;
'—xzfxm, and d=D,/D;-a,, a,, B, and j3, are
Ositive constants. The specific growth rates Hy
H, are with respect to the nutrient for which
R Species compete.

he logistic equation, which is often used to si-
ate competitive microbial growth®”, is a special
¢ where 3, = f3,.
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The Homogeneous Steady State

We begin by analysing the linear stability of the
homogeneous steady state. Eqs (11) and (12) are
written in the form of Eqs (3) and (4), and then
condition (7) is applied to obtain

(27 ey xyguy + @y, Xpgty) > 1+ po/ gy .{13)
Condition (8) results in Eq. (14).

Brxuoul iy, )= () = 2ad s Na! 1)

+ Boxagty[ Aaty, 1) — 2 {ay/py o/ 1))

+ (#2/#1) +(a1a2/ﬂf)(ﬁ1xw”1 + ﬁzxzouz)z >0

(ay/ p,)—

.(14)
where

h{uy, uy)= uBixpa 0/ ui+ Uz X000y 1.

The inequality is satisfied if the terms in square
brackets are non-negative. Combining the resulting
two inequalities then leads to:

. {15)
Eqgs (13) and (15) suffice to guarantee linear
homogeneous stability. Notice that if 1<a,
a,<2, Eq. (13) implies Eq. (15). In general six
parameters (a;, a,, B, B, #,, ;) and two initial
conditions {x,, and x,,) have to be specified to de-
fine the stability region(s) in the u, — u, plane. To
derive qualitative inferences about the behaviour
of the system, we consider two cases.

2
.

Uy 1 X3 + U Br Xy > sup [(i + 2p
@ a, Gzl

My arpy ]

Case (i):

1 2

_+__&=1+& (16)
ap  ax H

Case (ii):

2 2 '
R P {17)
a, ayu, Hi

Apart from reducing the dimensionality of the
problem, these equalities specify a relationship be-
tween a, and a, parameterised by u,/u,, the ra-
tio of the maximum specific growth rates of the
microorganisms. The physical implication of this
ratio is analysed below.

Figs 1 and 2 depict Eqs (16) and {17} for three
values of u,/u,. We recognise first that both the
sets of curves attain asymptotic values as either
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Fig. 1—Effect of maximum specific growth rates on the a-a,
' profile for case (i) [Eq. (16)]
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Fig, 2—Effect of maximum specific growth rates on the ay-ay
profile for case (ii) [Eq. (17)]

variable goes beyond about 6. Bqth the effec_t of
4/ iy and the variation of a, with a,, for a given
value of u,/u,, are strongest for moder.ately 'small
values of @; and a, These observations imply
that competition has significance when both spe-
cies are comparable in their metabolic and growth.
rates. When either species overwhelms the otl?e:r
(in growth-related functions such as resource ut11-1-
sation or resistance to inhibitors), the parametric
effect on the weaker species is negligible®?, _
The second interesting feature is the occurrence.
of two invariant points at (a, =1, a2=2.in Fig. 1)
and (a,=2, a;=1 in Fig. 2). At these ‘isoparam-
etric’ points @, and a, are ‘independent’ of u,/u,,
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[Eq. (18)]

and this fact may be exploited to prescribe er
ronmental conditions which will produce. the:
sired concentration profiles, u, and u,, of the: 3
species. E

Given a set (a,, a,), we can obtain regio
stability of the homogeneous state through:- E
(13) and (15). As an illustration, let a;=1, q.
for case (i) and a,=2, @, =1 for case (ii). T
as stated before, Eq. (13) implies Eq. (15) and;
be written as '

hixyy+ U8,y >

[ 3 [case (i)]
H

3/2 [case (ii)]

These two inequalities are shown graphicalil
Fig. 3. We observe that the areas of the unstab
regions vary inversely with Xjo and x,, This is
plausible because low initial concentrations of th
two species implies less crowding, less competitio
for resources and lower concentrations of inhibita
Ty products, all of which promote stabie coexist

Diffusion-driven instability :

For a homogeneous steady state to be destabi
lised by diffusion, resulting in pattern formation
inequalities (9) and (10) must also be satisfied. Ot

reading condition (9) with condition (7), we dext
duce that

d< ofa/du, <
ad fi/3u,

ie, the diffusion coefficient of the second sped.és
should be smaller than that of the first, -
Condition (10) may be expanded as



<
2{a+b)
{a+b)
- 0 at+b P
2

bility [Eq. (26)]

o242

au; auZ
+24(2901 90 _0f O |,
du, 0u, du, du,

-and this is ensured by

€quality can be written as:
,ﬁlxlﬂul + Brxygu, ) < ﬁlﬁ2xl(}x20ul 25
+(,u,/a, + 2#2/‘12)1313510“1

+(2u1/ a + py/ @) Baxy g1, -+ (22)

his is the condition for the onset of Turing insta-
ility in a homogeneous, linearly stable Lotka-Vol-
"ITa environment.

f either of the pairs of values (u,, u,) or (x,,

iy 2 2
‘"—.'+-£2..)ﬁ1x10u1 + (—*&+g—2)ﬁ2x2[,u2>0 . a . (23)
as a, a;

'ovided the other pair of values is not so large
4l either u,x,, or u,x,, becomes significanily
ter than zero. Since inequality (23) is always
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Fig. 4—Bifurcation diagram of the threshold for Turing insta-

T af,
Ou, du;  du, ou,
;. Eqs (20) and (8) may be combined to yield
0f 0f _ 0 0f _3f of
T g L2
Buz du, du, du, du, aul o (21)

"~ The inequality on the left has been shown earli-
er to result in Eq. (15). Upon substituting the ex-
pressions for the partial derivatives, the second in-

i) is very small, Eq. (22) may be approximated -
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tfue, it is instructive to consider the. physical im-
plications of the condifions that lead to it. Recall
that u; =x,/x;, and u, = x,/x,,. The requirement of
U X< 1 and u,x,, <1 may be met either by small
inoculum concentrations or by conditions of low
specific growth rates g, and u,. In both situations
X; and x, remain small. Thus, diffusion-driven in-
stability is favoured in the early stages of growth
and at low cell mass concentrations. Pattern for-
mation is therefore less likely to be observed in
rapidly growing species or in crowded popul-
ations, where one species tends to annihilate the
other: May’s" and Pianka’s® analyses also support
these deductions.

There are, however, limits to how small H, and
#; may be allowed to be. If 4, < <1 and u,<<1,
Eq.{22) may be simplified to

(ﬁ1x10u1)2+(ﬁ2x20u2)2+ ﬁ1x10u1ﬁ2x20u2 <0...(24)

This is clearly not possible since all the terms are
positive.

To analyse this further we return to the original
instability condition, Eq. (22). Let p=§,x,0u4, and
q= Py¥yu;. Then the threshold for Turing insta-
bility can be expressed as

PP—ag=bg— g ... (25)

where

a=up/a,+2u)/a, and b=2u,/a,+u,/a,. Eq.
(25) has two solutions o

2g={a+b)t J(a+ 1’))2—4p2

All real solutions for g and p lie on two
branches in the interval 0 < p<({a+ b)/2. This pro-
duces the parabolic profile of Fig. 4.

... (26)

Now, a and b are specified by the metabolic
properties of the two microorganisms whereas p
and ¢ depend on the initial conditions and the
time-varying concentrations. These latter two var-
iables can_therefore be sensitive to input fluctu-
ations. It is known that such sensitivity can change
the concentration patterns generated by the inter-
action of diffusion and reaction''. Since the system
is at the threshold of instability, an induced change
in p or g may cause the solution (Fig. 4) to ump’
from one branch to another. In other words, even
in an environment which is stable in the presence
of diffusion, parametric sensitivity can trigger Tur-
ing instability and spontaneous pattern formation.
This phenomenon has been observed in catalytic
reactions!2,
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Conclusions

An analysis of homogeneous stability and diffu-
sion-driven instability in a closed environment
. with two competing microorganisms shows that
the ratio of the maximum specific growth rates has
a strong effect on the stability regions. Competi-
tion has significance mainly when both species
have comparable growth rates; otherwise the dy-
namics of the weaker species is practically unaf-
* fected by changes in the system parameters.

For diffusion to destabilise a homogeneous sys-
~tem, the two microorganisms must have unequal
diffusivities. Turing instability is also favoured by
low cell mass concentrations (such as through
small inoculum size and low specific growth rates).
The threshold of instability has a parabolic profile,
and input fluctuations can trigger instability in an
environment which is stable even in the presence
of diffusion.
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Nomenclature.
D, = diffusivity of species 1, m*/s
D, = diffusivity of species 2, m*/s
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L =characteristic dimension, m

¢ =time, s

U, =x, /Xyq, dimensionless

Ua = X/X 2, dimensionless

x, =concentration of species 1, kg/m?

X0 = initial value of x,, kg/m*

X =concentration of species 2, kg/m? -

Xag = initial value of x,, kg/m?

z = characteristic distance, m

Greek letters-

a,, @, =parameters in the Lotka-Volterra model;. 1
B\, 8. =parameters in the Lotka-Volterra model, m%/|
iy = maximum specific growth rate of spcmes LY
Ha =maximum specific growth rate of spg:qes
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