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How effective is an extended Kalman 
filter for continuous yeast cultures  
affected by both inflow and  
measurement noise? 
 
P. R. Patnaik 
Institute of Microbial Technology, Sector 39-A, Chandigarh 160 036, 
India 

 
The usefulness of the extended Kalman filter (EKF) as 
an on-line estimator of process variables is known for 
monotonic laboratory-scale fermentations. However, 
this has not been tested for oscillating cultures under 
non-ideal conditions representative of large bioreac-
tors. So, in this study an EKF was applied for on-line 
filtering of simulated data of an oscillating continuous 
Saccharomyces cerevisiae culture with inflow and meas-
urement noise. For better accuracy, the tuning of the 
EKF was updated over successive time slices such that 
deviations between the noise-affected and noise-free 
profiles were minimized during each interval. As shown 
by the concentrations of biomass and ethanol, noise 
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disrupted periodicity in both, but oscillations close to 
the noise-free behaviour could be restored substan-
tially by the EKF, thus suggesting its suitability for 
large non-ideal bioreactors with either monotonic or 
oscillating cultures.  
 

MICROBIAL fermentations operated under production 
conditions are often subject to noise from two sources. 
One source is broadly the group of sensory devices for 
different concentrations, temperature, pH, etc. Each of 
these devices has a separate measurement noise, but for 
modelling and control they are conveniently grouped into 
one vector with, as explained later, one covariance matrix 
for the noises. The other source is the environment, and 
this noise usually enters through a feed stream. Obvi-
ously, therefore, batch fermentations are less susceptible 
to this kind of noise, but they are not totally insulated 
from environmental effects because of variables such as 
the stirrer speed and pH control by the dosing of an alkali 
or an acid. By comparison, continuous and fed-batch 
fermentations are directly under the influence of environ-
mental variations. Nevertheless, many microbial cultiva-
tions are carried out in fed-batch or continuous mode 
because of economic, kinetic or physiological benefits1,2. 
For such fermentations, suitable filtering of noise-
affected data is at the core of any control strategy. 
 The Kalman filter is possibly the most widely used 
technique to generate smooth, usable data from noise-
affected measurements. Since its theory is well docu-
mented3, only a brief outline is provided later for com-
pleteness. Applications of the Kalman filter to microbial 
processes have been mainly for on-line estimations of 
variables that are difficult or expensive to measure on-line 
and whose off-line estimations are time-consuming4,5. Al-
though production-scale operations are more prone to dis-
turbances, ironically most studies with Kalman filters 
have focused on more ‘ideal’ laboratory-scale fermenta-
tions. However, these applications span different organ-
isms, objectives, modes of operation and the variables 
monitored. The early work has been reviewed by Lubbert 
and Simutis6, who pointed out both the potential and 
some weaknesses of the Kalman filter; these were addres-
sed by later studies. 
 The variety of later applications is apparent from the 
observation that Neeleman and co-workers7,8 used the 
Kalman filter to estimate the respiratory coefficients and 
specific growth rates of insect cell cultures; Zhang and 
Su9 employed it for intracellular protein estimations in 
plant cell cultures, and Simon10 for the removal of noise 
from measurements of polychlorinated biphenol degrada-
tion by bacterial co-cultures. Holwill et al.11 also focused 
on proteins, in particular the estimation of the fractional 
precipitation of alcohol dehydrogenase from clarified 
yeast homogenate. This variety is extended further by the 
work of Vargas et al.12 with waste-water treatment; their 
interest was in developing a time-optimal control system.  

 While establishing the effectiveness of the Kalman fil-
ter for bioreactors, these studies (with the exception of 
Simon10) were also restricted to laboratory-scale vessels 
operated under reasonably ideal conditions that did not 
truly mimic real production-scale processes. An impor-
tant feature that ‘non-idealizes’ large-scale fermentations 
is the incursion of disturbances or noise. They usually en-
ter through an inlet stream, and therefore fed-batch and 
continuous cultivations are more susceptible to process 
noise than batch operations. However, both modes of ope-
ration can be affected by measurement noise, which is a 
feature of the measuring instrument rather than that of the 
biological process. While intelligently controlled noise 
can be beneficial to a microbial culture, uncontrolled or 
improperly controlled noise can be seriously detrimental. 
For instance, noise can drive a fermentation from mono-
tonic to chaotic behaviour or initiate run-away behaviour 
from a stable performance13–15. 
 Despite its prevalence and the fact that noise can have 
more damaging effects on cellular processes than on 
chemical processes, recognition and quantitative analyses 
of the effects of noise on microbial processes are of re-
cent origin. Nevertheless, now it has been established that 
disturbances flowing from the environment can seriously 
undermine cell viability, reactor stability, productivity 
and selectivity14–16. These studies cover different micro-
organisms and different bioreactor operating modes, and 
thus indicate a general validity of the injurious effects of 
noise. However, they all cover fermentations whose 
noise-free profiles change monotonically with time. While 
such fermentations include many important examples, 
they do not include an important class of fermentation 
which displays steady oscillations in continuous cultures. 
Perhaps the best known of these are Zymomomas mobilis 
and Saccharomyces cerevisiae, both of which generate 
ethanol.  
 Oscillating cultures exhibit a rich variety of perform-
ances, depending on the operating conditions. Both regu-
lar and aperiodic oscillations are possible, chaotic 
behaviour and, under restricted conditions, monotonic 
profiles too are observed17,18. Thus, the role of noise in 
such cultures is both difficult and important to under-
stand. It is difficult because noise can cause abrupt shifts 
in the nature of the fermentation, and it is important be-
cause, as previous work with monotonic fermentations 
has shown14,15, harnessing the noise suitably can improve 
cell growth and productivity beyond that of a noise-free 
fermentation. So the effectiveness of a Kalman filter in 
modulating noise arising simultaneously from the feed 
stream and the measuring devices for an oscillating con-
tinuous fermentation has been investigated in this work. 
 Many biological processes exhibit temporal oscilla-
tions under certain conditions. Yeast glycolysis19, the cir-
cadian rhythm20 and the cell cycle21 have been widely 
studied. Equally important but less intensively analysed 
are metabolic oscillations seen in continuous cultures  
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of some bacteria (Z. mobilis)22 and yeasts (S. cerevi-
siae)17. 
 From the perspective of both molecular genetics and 
industrial fermentation, S. cerevisiae is an important or-
ganism because (a) its biochemistry and physiology are 
well understood, (b) noninvasive methods of measure-
ment are possible in continuous cultures, (c) it does not 
generate endotoxins, and (d) it is a source of many useful 
products. These aspects and the mechanisms and models 
for oscillatory behaviour have been reviewed recently23. 
 Oscillations in continuous cultures of S. cerevisiae 
have been reported with different carbon sources (glu-
cose, ethanol or acetaldehyde) and different operating 
conditions, notably the dilution rate and gas–liquid mass 
transfer rate. Both intracellular reactions and transport 
between the cells and the surrounding fluid contribute to 
oscillatory behaviour. Because their interactions are 
complex and not fully understood, models have either  
focused on the intracellular kinetics or combined trans-
port equations with lumped kinetics. The latter approach 
is a more sensible compromise than ignoring transport  
effects, especially since the latter can be significant in 
large bioreactors1. 
 This study and a preceding one24 are based on a cyber-
netic model proposed by Jones and Kompala18. This 
model was preferred over others for a few reasons. First, 
the cybernetic approach formalizes the established evolu-
tionary concept that microorganisms try to follow those 
metabolic pathways that are most favourable to their sur-
vival under the prevailing conditions. Secondly, it has 
greater physiological closeness, it is simpler than mecha-
nistic models of comparable accuracy and it portrays 
most of the observed features. Thirdly, the Jones–Kompala 
model has been able to explain excursions between diffe-
rent patterns of oscillations as a consequence of changes 
in operating conditions or substrate composition or gene-
tic manipulation, which many mechanistic models have 
struggled to elucidate. 
 Briefly, Jones and Kompala18 identified three meta-
bolic pathways by which S. cerevisiae may utilize the 
available carbon sources: glucose fermentation, ethanol 
oxidation and glucose oxidation. The choice of pathway 
depends on the culture conditions, primarily the dilution 
rate, dissolved oxygen concentration and gas–liquid mass 
transfer rate. Although ethanol is synthesized under an-
aerobic conditions in batch cultures, it can be formed in 
certain ranges of the dissolved oxygen concentration and 
mass transfer rate in oscillating continuous cultures25. In 
the cybernetic framework, the organism chooses the path-
way that is most favourable to its survival. So, it may shift 
from one pathway to another under changing conditions, 
and Jones and Kompala18 postulated that that dynamic 
competition among the pathways is the main cause of oscil-
lations. Their model is summarized in the Appendix. 
 The Kalman filter is a set of mathematical equations 
that provide an efficient recursive solution of the least-

squares type. The filter can provide estimations of past, 
present and future states of a system even when a precise 
model is not known. This feature is useful for microbial 
processes under non-ideal (realistic) conditions because 
models developed on laboratory data may become inap-
plicable or imprecise under the influence of disturbances 
and spatial gradients1,26. 
 The basic Kalman filter addresses the problem of try-
ing to estimate the state x– of a discrete time-controlled 
process that is governed by the linear difference equation: 
 
 x– k = A

–
x– k–1 + B

–
u– k + w– k–1, (1) 

 
with a measurement vector that follows: 
 
 z–k = H 

–
x–k + v– k. (2) 

 
In these and later equations, lower-case letters with over-
bars denote vectors, while similar capital letters denote 
matrices. Scalars do not have overbars. (k – 1) is the cur-
rent instant of time and k is the point one time-step ahead. 
w– k and v– k represent the process noise and measurement 
noise respectively. 
 Previous studies26–28 show that w– k and v– k may be repre-
sented as white noise with normal probability distribu-
tions: 
 
 p(w) ∼ N(0, Q 

–
), (3) 

 
 p(v) ∼ N(0, R 

–
), (4) 

 
where Q 

–
 and R 

–
 are the respective covariance matrices. 

Since eq. (1) applies to linear equations whereas many 
fermenation (and other biological) processes follow 
nonlinear models, the extended Kalman filter (EKF) was 
developed. It applies to any nonlinear difference equation 
of the form: 
 
 x– k = f (x–k–1, u

–
k, w

–
k–1), (5) 

 
 z–k = h

–
(x–k, v

–
k). (6) 

 
In principle, the EKF solves the problem of determining 
the current estimates of a set of variables by expressing 
them as linear functions centred around the partial deri-
vatives of the process and measurement functions evalu-
ated at the (known) previous instant of time. The detailed 
theory and equations are given in the literature3,29. Note 
that both eqs (1) and (2) and eqs (5) and (6), in pairs, are 
in discrete form, whereas most biological processes are 
described by continuous models. This is not an impedi-
ment because, in practice, data are sampled at discrete 
points in time. Since the EKF allows any arbitrary varia-
tion in the sampling interval, this may be varied accord-
ing to the nature of the process. For instance, the interval 
may be made inversely proportional to the current con-
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centration gradient, thus generating closely spaced data 
when the variations are steep and more widely separated 
points during mild variations14. 
 Earlier studies6,14,16,28 have suggested that the feed 
stream is a major carrier of noise in continuous and fed-
batch fermentations, and white noise is the principal 
component of the observed fluctuations. So, to generate 
data simulating a noise-influenced oscillating culture, the 
equations in the Appendix were solved with the parame-
ter values used by Jones and Kompala18 (see Table 1) and 
white noise specified by Q 

–
 and R 

–
. In an experimental ap-

plication, the measurement covariance R
–
 is usually meas-

ured prior to the operation of the filter since it relates to 
the filter and not the process. The process noise covari-
ance Q 

–
 is more difficult to determine, since typically we 

do not have the ability to observe the process we are esti-
mating. So, based on previous studies5,10,29,30, Q 

–
 was set 

initially to Q 
–

d = ([0.0001 … 0.0001]T) and R 
–
 to 0.003 I 

–
, 

where I 
–
 is the identity matrix and Q 

–

d is a diagonal  
matrix. Now, the model of Jones and Kompala18 has eight 
concentrations whose rates of change are expressed by eqs 
(A6)–(A11) in the Appendix. So R 

–
 is an (8*8) matrix. 

Since the glucose and oxygen feed-streams are the only 
inflows to the bioreactor, environmental noise was con-
sidered to be present in these two flow rates, thus making 
Q 
–
 a (2*2) matrix. Both Q 

–
 and R 

–
 get updated recursively 

as shown in Figure 1. 
 Apart from its applicability to nonlinear process, an 
important distinction between the EKF and the basic dis- 
 
 

Table 1. Values of parameters18 

Parameter Units Value 
 

α h–1 1.0 
α* g h–1 0.1 
β h–1 0.2 
γ1 g g–1 6.0 
γ2 g g–1 6.0 
γ3 g g–1 0.3 
µ1,max h–1 0.44 
µ2,max h–1 0.32 
µ3,max h–1 0.31 
ϕ1 g g–1 0.27 
ϕ2 g g–1 1.067 
ϕ3 g g–1 2.087 
ϕ4 g g–1 0.95 
D h–1 0.16 
G0 g l–1 28.0 
kLa h–1 1200.0 
K1 g l–1 0.1 
K2 g l–1 0.02 
K3 g l–1 0.001 
KO2 mg l–1 0.0001 
KO3 mg l–1 0.0001 
O* mg l–1 7.5 
Y1 g g–1 0.16 
Y2 g g–1 0.74 
Y3 g g–1 0.50 

crete Kalman filter is that in the former case the Jacobian 
H 

–

k, in the equation for the Kalman gain K 
–

k also gets up-
dated with each iteration, thereby speeding up conver-
gence and improving the accuracy of estimations. For 
better filtering effectiveness, the duration of fermentation 
was divided into 1 h intervals and the tuning of the EKF 
was updated progressively over successive intervals. 
 The effects of noise and filtering are portrayed here 
through the concentrations of two key variables: biomass 
and ethanol. These variables were chosen because: (a) 
their magnitudes and amplitudes of oscillation are much 
larger than those of the other concentrations18 and (b) cul-
tivation processes generally try to maximize the producti-
vity of these two variables. 
 S. cerevisiae also synthesizes and consumes internal 
storage carbohydrates, principally glycogen, trehalose and 
mannan25,31. In the work of Jones and Kompala18, the car-
bohydrate concentration oscillated at an amplitude com-
parable to that of ethanol and at the same frequency. So 
the effect of noise on carbohydrate concentration was 
similar to that on ethanol, and hence only the ethanol pro-
files have been displayed. However, both are discussed in 
the context of the effect of noise on the metabolism and 
control of the process. 
 Figure 1 shows that there are two stages in the func-
tioning of an EKF: initial a priori estimates are corrected 
by a posteriori estimates. In the present application, the a 
priori values pertained to pre-filtered noisy data and the 
corrected values were the result of filtering. The duration 
of fermentation represented in the study by Jones and 
Kompala18, 50 to 76 h from the start, was divided into 26 
one-hour intervals. During each interval the values of the 
covariances Q 

–
 and R 

–
 were determined such that the aver-

age deviation between the noise-affected and noise-free 
profiles was minimized. Since the concentrations at the 
end of each time slice depend on the (optimum) values of 
the previous interval, the feedback loop in Figure 1 is 
completed. This Markovian strategy not only conforms to 
the EKF theory but also has biological support, since its 
effectiveness has been demonstrated in other applica-
tions14,16,32. 
 The extent of distortion of the concentration profiles is 
evident from Figure 2 a and b. Constancy of both ampli-
tude and cycle time are disrupted by noise, and smooth 
oscillations degenerate to random multi-modal fluctua-
tions. It is also seen that the biomass is more severely af-
fected than ethanol concentration. These differences have 
important implications metabolically and for reactor con-
trol. Studies by different groups25,31,33 have shown that 
the synthesis of biomass, ethanol and carbohydrates var-
ies at different rates across the S, G1, G2 and M phases, 
but no consistent pattern seems to have been determined. 
Based on the work by Kuenzi and Fiechter34, Jones and 
Kompala18 have stated that S. cerevisiae stores carbohy-
drates when the medium is deficient in glucose and etha-
nol, and consumes the surplus carbohydrates when either 
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  Initial estimates for x^ k–1 and Pk–1 
 

Time update (‘Predict’) 

1. Project the state ahead 

x^ k
– = f (x^ k–1, uk, 0) 

2. Project the error covariance ahead 

Pk
– = AkPk–1Ak

T + WkQk–1Wk
T 

Measurement update (‘Correct’) 
 
1. Compute the Kalman gain 

Kk = Pk
–Hk

T(HkPk
–Hk

T + VkRkVk
T)–1 

2. Update the estimate with measurement zk 

x^ k = x^ k
– + Kk(zk – h(x^ k

–, 0)) 

3. Update the error covariance 

Pk = (I – KkHk)Pk
– 

 

 
 

Figure 1. Computation procedure of the extended Kalman filter. 
 
 

    
 

Figure 2. Time-domain profiles of (a) cell mass concentration and (b) ethanol concentration without noise and with noise. 

 

substrate is present in large concentrations. Experiments 
by Duboc et al.31 indicated a somewhat different infer-
ence. Biomass synthesis rate was high and ethanol syn-
thesis low in all phases except the S phase, but 
carbohydrate synthesis was fast only in the G1 phase. 
Moreover, carbohydrates were consumed only in the G1 
phase, whereas according to Jones and Kompala18, there 
should have been some consumption in all phases, al-
though at different rates. 
 Differences have also been observed between the syn-
thesis and utilization rates of different carbohydrates. 
However, because of the lack of sufficient kinetic data for 
the individual constituents, it has not been possible to 
propose models for each of them and study the effect of 
noise. Nevertheless, it may be useful to note that glyco-
gen, which constitutes the largest fraction of the carbohy-
drates, follows the same pattern as the biomass, whereas 
other carbohydrates and proteins do not31. The complex-
ity of such variations, even without noise, requires sen-
sory and control methods that are versatile, sensitive, 
fast, robust and ‘intelligent’. Off-line measurements can 
be too slow to provide data for timely updating and correc-

tive action, while on-line methods may be too expensive 
for production applications4. In such situations, knowl-
edge-based methods, utilizing expert systems, neural net-
works and genetic algorithms meet these requirements 
much better than off-line sensors and PID-based control 
methods35,36. 
 The effect of introducing an EKF is revealed in Figure 
3 a and b. Since the actual profiles of the concentrations 
have been shown in Figure 2 a and b, the percentage devia-
tions are now more informative. Corresponding to the 
smaller extent of distortion by noise for ethanol concen-
tration than for biomass, the extent of improvement pro-
duced by the EKF is also larger for ethanol. What is 
visually apparent from Figure 3 a and b may be quantita-
tively characterized by defining a filtering index (FI): 

 

,
filter)without deviation (%

filter)with deviation  (%filter)without deviation  (%

FI
1

i

ii

M

i

−

= ∑
=  

 (7) 
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Figure 3. Variation in the deviation of noise-affected concentration of (a) biomass and (b) ethanol (from the noise-free 
concentration) without and with an extended Kalman filter. 

 
 

Table 2. Pearson’s product moment correlation coefficients 

  Biomass Ethanol Biomass Ethanol 
  (unfiltered) (unfiltered) (filtered) (filtered) 
 

Biomass (unfiltered) 1.0   0.166   0.999 0.122 
Ethanol (unfiltered) – 1.0    0.162 0.984 
Biomass (filtered) – – 1.0 0.122 

 
 
where M is the number of datapoints. In this study, M 
was 26. The calculated values of FI were 0.563 for etha-
nol and 0.338 for biomass. The values may be improved 
by employing (a) shorter time intervals, (b) two or more 
filters in series or (c) a combination of an EKF and a 
knowledge-based device5,30. However, each of these meth-
ods increases the computation effort, and consequently 
the response time at each stage. So the choice of the best 
filtering technique rests on a balance between the im-
provement achieved and the effort required14,37; this as-
pect is under investigation. At the theoretical limit of a 
perfect filter, the noise-free performance should be fully 
recovered and hence FI → 1. 
 To determine whether the deviations without and with 
an EKF were correlated, Pearson’s product moment cor-
relations and scatter diagrams were computed as described 
by Fisher38. The correlation between two noise-influen-
ced variables X and Y is defined as: 

 ,
)(var)(var

),(cov
, YX

YX
yx =ρ  (8) 

where var stands for variance and cov for covariance. The 
correlation coefficients (Table 2) show that, as expected, 
noise-induced deviations in the concentrations of biomass 
and ethanol are not correlated (small coefficients), whereas 
each is strongly correlated with itself. 

 
 
Figure 4. Scatter diagrams portraying the relation between the devia-
tions of pairs of variables at different times. Abscissae and ordinates 
correspond to the following variables: a, XU, EU; b, XU, XF; c, XU, 
EF; d, XF, EF; e, EU, EF; f, XF, EU; XU, Unfiltered biomass; XF, Fil-
tered biomass; EU, Unfiltered ethanol; EF, Filtered ethanol. 
 

 

 Whereas correlation coefficients present an overall pic-
ture, detailed variations in the correlation between the 
concentrations at each of the 26 sampled points are por-
trayed in the scatter diagrams (Figure 4). Each set of points 
relates the deviations caused by noise (without or with 
filtering) for one viable with another. For instance, Figure 
4 a relates unfiltered biomass concentration with unfil-
tered ethanol concentration. As expected, the points are 
randomly scattered here and in Figure 4 c, d, and f, all re-
lating biomass and ethanol concentrations under different 
conditions. These random distributions translate to the 
small correlation coefficients in Table 2. On the contrary, 
the deviations for the same variable without and with an 
EKF (Figure 4 b and e) are distributed linearly, indicating 
a strong correlation at all times, reflected in the large co-
efficients in Table 2. 
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 The EKF has been shown in previous studies to be a 
useful on-line estimator of state variables for nonlinear 
fermentation processes. However, those processes were 
relatively ‘ideal’ in that there was minimum external 
noise (mainly because of the small scale of operation and 
elaborate controls) and the disturbances were mainly in 
the measurement procedure. 
 To evaluate the useful of an EKF in more difficult (and 
realistic) situations, this study considered an oscillating 
continuous fermentation with noise in both the feed 
stream and the measuring devices. Using an experimen-
tally established cybernetic model for the continuous culti-
vation of S. cerevisiae in a noise-free bioreactor, 
computer-generated white noise was introduced in the 
feed stream and in the sensors for the performance vari-
ables by suitable covariance matrices, and the modified 
model was solved to generate data mimicking a large-
scale, noise-affected fermentation. 
 Noise destroyed the smooth periodic variations in the 
concentrations of the biomass and the product ethanol. 
An EKF was employed to filter out the noise and recover 
the deterministic performance. Based on previous work, 
the EKF was tuned stepwise over successive slices of 
time covering the duration of fermentation. The noise-
free, smooth oscillations were substantially recovered with 
an EKF, but there were differences in the extent of recov-
ery for the two concentrations. The less affected concen-
tration of ethanol was also recovered to a larger extent. 
Further improvements are possible, but they can slow 
down the response times. 
 Since this was a simulated experiment, randomness of 
the noise-induced displacements without and with an 
EKF was cross-checked by Pearson’s correlation coeffi-
cients and scatter plots. Both showed, as expected, that 
displacements in the concentrations of ethanol and bio-
mass were uncorrelated, whereas those for the same vari-
able (without and with filtering) were strongly correlated. 
In summary, therefore, this study shows that an EKF can 
be an effective noise filter and state estimator in realistic 
conditions for complex fermentation processes. 

Appendix 

The cybernetic model of Jones and Kompala18 
 Depending on the prevailing conditions, S. cerevisiae 
may follow any one of three metabolic pathways. The 
rate of growth ri along each pathway follows modified 
Monod kinetics, as given below. 
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The pathways are not mutually exclusive and at a given 
instant, the organism may follow two or more pathways 
at different rates. Each pathway is controlled by a key en-
zyme ei, with synthesis rate ui and activity vi, which fol-
low: 
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With eqs (A1)–(A5), the mass balances for a continuous 
flow bioreactor may be written as follows: 
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Inclusion of the term α* in the enzyme synthesis equa-
tions (A10) is based on Turner and Ramkrishna39, who 
have shown its importance in predicting the induction of 
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enzymes that have been repressed for long durations. The 
specific growth rates thus also include α* in the model: 
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Equation (A11) expresses the rate of change of internal 
storage carbohydrates that are an integral part of the me-
tabolism25,31. 
 The ϕi are stoichiometric coefficients for different sub-
strates Si, and γi are similar coefficients for carbohydrate 
synthesis and consumption by the cells. Jones and Kom-
pala18 may be consulted for a full discussion of the 
model. A point not clarified there is the identification of 
S1, S2 and S3. Reference to eqs (A1)–(A3) shows that 
S1 = G, S2 = E and S3 = G. This identification is needed to 
solve the model. The values of the parameters are listed 
in Table 1. 

Nomenclature 

C = Intracellular storage carbohydrate concentra- 
   tion (g l–1) 
D = Dilution rate (h–1) 
ei = Key enzyme concentration for ith pathway  
   (g g–1 biomass) 
E  = Ethanol concentration in the bioreactor (g l–1) 
G  = Glucose concentration in the bioreactor (g l–1) 
G0 = Glucose concentration in the feed stream  
   (g l–1) 
kLa = Oxygen mass transfer coefficient (h–1) 
Ki = Michaelis constant for ith pathway (g l–1) 
KO2, KO3 = Oxidative pathway oxygen saturation con- 
   stants (mg l–1) 
O = Dissolved oxygen concentration in the bioreac- 
   tor (mg l–1) 
O* = Dissolved oxygen solubility limit (mg l–1) 
ri = Biomass growth rate on ith pathway (h–1) 
Si = Carbon substrate concentration for ith path- 
   way (g l–1) 
t = Elapsed time (h) 
ui = Cybernetic variable controlling key enzyme  
   synthesis for ith pathway (–) 
vi = Cybernetic variable controlling key enzyme  
   activity for ith pathway (–) 
X = Biomass concentration in the bioreactor  
   (g l–1) 
Yi = Yield coefficient for ith pathway (g biomass g–1  
   substrate) 
 
α = Specific enzyme synthesis rate (h–1) 
α* = Constitutive enzyme synthesis rate (g h–1) 
β = Specific enzyme degradation rate (h–1) 
ϕi = Stoichiometric coefficient for ith carbon sub- 
   strate (–) 

γi = Stoichiometric coefficients for storage carbo- 
   hydrate synthesis and degradation (–) 
µi = Specific growth rate of biomass on ith sub- 
   strate (h–1) 
µi,max = Maximum specific growth rate on ith sub- 
   strate (h–1) 
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This study reports the cloning and characterization of 
a full-length amphioxus cyclophilin cDNA. The cDNA 
consisted of 1358 bp with a 495-bp open reading frame 
(ORF) corresponding to a deduced protein of 164 amino 
acids, with a calculated molecular mass of 17.3 kDa. It 
possesses the signature sequence of Cyclophilins (Cyps) 
in the PROSITE library, and all the conserved 13 
amino acids, including the crucial tryptophan (W) 
residue (position 121) that are predicted to be invol-
ved in PPIase activity and CsA binding. In addition, it 
has neither N-terminal extension sequence nor C-termi-
nal extension sequence. These indicate that the cDNA 
encodes a homologue of eukaryotic cyclophilin A, des-
ignated as AmphiCypA. Phylogenetic analysis shows that 
AmphiCypA is intermediate between sea urchin Cyp 
and zebrafish Cyp, clustering together with zebrafish 
Cyp. This agrees with the notion that amphioxus repre-
sents a basal lineage of chordates in phylogeny. 
Northern blot analysis revealed that AmphiCypA is 
expressed in all the tissues examined, but its expres-
sion is apparently elevated in fully-grown ovaries. It is 
suggested that elevated expression of AmphiCypA in 
fully-grown ovaries could be due to a role for this pro-
tein in oogenesis or it may be involved in early deve-
lopment. 
 
CYCLOPHILINS (Cyps) are a family of proteins that bind 
to the immunosuppressive agent, cyclosporin A (CsA), via 
a central highly conserved CsA-binding domain1–3. Bio-
chemical studies have shown that Cyps have peptidyl-
prolyl cis–trans isomerase (PPIase: EC 5.2.1.8) acti-
vity4,5. Their biological significance is manifested by the 
catalysis of protein folding via peptide bond rotation on 
the amino side of proline residues6,7, the action as a chap-
erone for protein trafficking8, the nucleolytic degradation 
of the genome9 as well as the involvement in stress res-
ponse10,11. 
 The first identified cyclophilin was human CypA, an 
18-kDa soluble cytoplasmic protein12. To date, divergent 
types of Cyps have been identified on the basis of their 
size and target location. For example, in addition to CypA, 
at least four other types of Cyps have been characterized 


