@article{open2501, volume = {48}, month = {September}, author = {Vipin Singh and Bani Jolly and Neeraj K Rajput and Sayan Pramanik and Anshu Bhardwaj}, note = {Copyright of this article belongs to Elsevier Science. }, title = {MtBrowse: An integrative genomics browser for human mitochondrial DNA.}, publisher = {Elsevier Science}, journal = {Mitochondrion}, pages = {31--36}, year = {2019}, url = {http://crdd.osdd.net/open/2501/}, abstract = {The human mitochondrion is a unique semi-autonomous organelle with a genome of its own and also requires nuclear encoded components to carry out its functions. In addition to being the powerhouse of the cell, mitochondria plays a central role in several metabolic pathways. It is therefore challenging to delineate the cause-effect relationship in context of mitochondrial dysfunction. Several studies implicate mutations in mitochondrial DNA (mtDNA) in various complex diseases. The human mitochondrial DNA (mtDNA) encodes a set of 37 genes, 13 protein coding, 22 tRNAs and two ribosomal RNAs, which are essential structural and functional components of the electron transport chain. As mentioned above, variations in these genes have been implicated in a broad spectrum of diseases and are extensively reported in literature and various databases. A large number of databases and prediction methods have been published to elucidate the role of human mitochondrial DNA in various disease phenotypes. However, there is no centralized resource to visualize this genotype-phenotype data. Towards this, we have developed MtBrowse: an integrative genomics browser for human mtDNA. As of now, MtBrowse has four categories - Gene, Disease, Reported variation and Variation prediction. These categories have 105 tracks and house data on mitochondrial reference genes, around 600 variants reported in literature with respect to various disease phenotypes and predictions for potential pathogenic variations in protein-coding genes. MtBrowse also hosts genomic variation data from over 5000 individuals on 22 disease phenotypes. MtBrowse may be accessed at http://ab-openlab.csir.res.in/cgi-bin/gb2/gbrowse.} }