@article{open537, volume = {392}, number = {4}, month = {February}, author = {Sanjay Rawat and C Raman Suri and Debendra K Sahoo}, note = {Copyright of this article belongs to Elsevier Science}, title = {Molecular mechanism of polyethylene glycol mediated stabilization of protein.}, publisher = {Elsevier Science}, year = {2010}, journal = {Biochemical and biophysical research communications}, pages = {561--6}, keywords = {Molecular mechanism; BSA; Polyethylene glycol; Protein stability}, url = {http://crdd.osdd.net/open/537/}, abstract = {The effect of different molar ratios of polyethylene glycol (PEG) on the conformational stability of protein, bovine serum albumin (BSA), was studied. The binding of PEG with BSA was observed by fluorescence spectroscopy by measuring the fluorescence intensity after displacement of PEG with chromophore ANS and had further been confirmed by measuring the intrinsic fluorescence of tryptophan residues of BSA. Co-lyophilization of BSA with PEG at optimum BSA:PEG molar ratio led to the formation of the stable protein particles. Circular dichroism (CD) spectroscopy study suggested that a conformational change had occurred in the protein after PEG interaction and demonstrated the highest stability of protein at the optimum BSA:PEG molar ratio of 1:0.75. Additional differential scanning calorimetry (DSC) study suggested strong binding of PEG to protein leading to thermal stability at optimum molar ratio. Molecular mechanism operating behind the polyethylene glycol (PEG) mediated stabilization of the protein suggested that strong physical adsorption of PEG on the hydrophobic core of the protein (BSA) along with surface adsorption led to the stability of protein.} }