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The yeast Saccharomyces cerevisiae exhibits sustained oscillations under noise-free controlled conditions in 
continuous cultures. The regular periodicity of the oscillations and synchrony between different metabolic variables may be 
described by mathematical models and model-based control. Large bioreactors, however, are prone to disturbances or noise 
in the feed stream, which may alter the oscillatory behaviour. This aspect has been investigated. Time-dependent Gaussian 
noise was applied to the substrate feed rate, and it was seen through simulations that while periodicity in the cell mass 
concentration was lost, other variables were less severely affected. A corollary observation was that the earlier synchrony 
among different variables, some intra-cellular and some extra-cellular, remained neither complete nor constant, indicating 
that intra-cellular processes are affected by external disturbances. Thus, deterministic models and control policies based on 
them may not be suitable in realistic industrial conditions, where intelligent heuristic approaches are more appropriate. 
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Introduction 

Inflow disturbances are an undesirable but 
common feature of microbial fermentations under 
production conditions. While batch fermentations are 
less likely to be affected by disturbances, kinetic and 
metabolic considerations favour fed-batch or 
continuous operation1. Inhibitions by glucose (beyond 
a certain concentration) and overflow metabolism are 
two key features, and their effects vary with both 
space and time in nonhomogeneous broths. 
Nevertheless, nonhomogeneity is unavoidable in large 
bioreactors and may even be beneficial under 
controlled situations2,3. 

White the size of the vessel, the type of impeller, 
the presence or absence of two or more phases and the 
rheological properties of the broth determine the 
spatial variations; the position and the mode of 
addition of the substrate influences the spatial 
distributions of cells4 as well as the intra-cellular 
compositions and genetic responses to extra-cellular 
variations5. With the increasing use of control 

methods based on cell physiology and artificial 
intelligence, classic methods of substrate feed, such as 
the linear or polynomial or exponential rate, are being 
replaced by nonlinear rates that are more closely 
linked with metabolic and hydrodynamic changes 
while they occur6,7. Whereas, such feeding methods 
enable accurate control and high productivities, they 
also introduce rapid changes in the mixing patterns, 
which in turn affect substrate consumption, cell 
movements and growth, and intra-cellular 
metabolism. 

Experimental data of feed rates and 
concentrations in bioreactors with spatial gradients4,8,9 
and of industrial scale fermentations subject to inflow 
disturbances10,11 indicate that often it may be difficult 
to differentiate between fluctuations introduced by 
deliberate control actions and those arising through 
environmental disturbances. Therefore, not 
surprisingly, it has been difficult to propose simple 
and accurate dynamic models that are amenable to 
easy automation for complex microbial processes. 
Lumped models do not include all relevant features 
and are not sufficiently flexible, while distributed 
models employing fluid dynamic equations are too 
complex for on-line applications12. 
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Although, model-independent methods, such are 
expert systems, neural networks and genetic 
algorithms, provide one answer to the model-building 
problem for large bioreactors, they are essentially 
‘black box’ devices that may not always have a strong 
fidelity to the physical and physiological processes. 
They can also be computationally demanding. So, a 
good compromise seems to be to combine 
mathematical models with the artificial intelligence 
methods mentioned above13,14. However, even for 
well-studied organisms, such as Saccharomyces 
cerevisiae15 and Penicillium chrysogenum16, different 
configurations of ‘grey box’ models, i.e. combinations 
of mathematical equations and artificial intelligence 
components, seem to work comparably well in the 
laboratory but it is not known whether these 
performances will be sustained under nonideal 
conditions. These observations underscore the need to 
analyze bioreactor performance adequately before 
developing hybrid models and control strategies. 

A fundamental issue in any modeling effort is the 
identification of the principal variables and their 
behavior under the conditions of interest. However, 
for bioreactors subject to the disturbances possible in 
industrial operation, this aspect has received less 
attention than the kinetics and dynamics of ‘clean’ 
small-scale fermentations and their use for model-
based control and applications of artificial 
intelligence. Since process identification is at the core 
of any bioreactor optimisation, this aspect is the 
subject of the present study. The more complex the 
fermentation, the more important it is to understand 
its behaviour before optimisation and control are 
attempted. The cultivation of S. cerevisiae for ethanol 
production was chosen from this perspective. It is an 
industrially important organism with a complex 
physiology, which displays spontaneous oscillations 
under certain conditions. The nature and existence of 
oscillations depend on the operating conditions10,17 as 
well as the genetic make-up of the cells18,19, and the 
exact reasons for the appearance and disappearance of 
oscillations are still under debate. 

Materials and Methods 

Fermentation Description and Data Generation 

S. cerevisiae exhibits sustained oscillations in the 
cell mass concentration and those of key intra-cellular 
and extra-cellular components under certain 
conditions in continuous cultures. Owing to its 

industrial importance, complex but fascinating 
physiology, and both the need and difficulty of 
controlling oscillatory behaviour in production-scale 
bioreactors, different mechanisms and models have 
been proposed. The model used herein captures, 
without being too complex, most of the features 
observed in laboratory-scale fermentations. 

Unlike the mechanistic approach of most workers, 
Jones and Kompala17 proposed a cybernetic model. 
For the purpose of present study, only a brief outline 
of the model development will suffice. The cybernetic 
approach, first proposed by Ramkrishna20, 
hypothesizes that a microorganism utilizes the 
available resources in such a way as to maximize its 
own survival. Mathematically this is usually 
expressed by maximizing the growth rate. 

On this basis, Jones and Kompala17 extended an 
earlier model21 to include variations in dissolved 
oxygen concentration. Previous studies have shown 
that, with glucose as the main carbon source, there are 
three metabolic pathways. One is glucose 
fermentation, which produces a high growth rate and 
ethanol production. The second pathway is followed 
when glucose concentration is low; here the cells 
consume ethanol oxidatively. While these two 
metabolic routes are common to both batch and 
continuous cultures, a third, glucose oxidation is 
observed only in continuous operation. According to 
Jones and Kompala17, the pathways follow Monod 
kinetics. 

(a) Glucose fermentation 
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As seen above, each pathway has a ‘key enzyme’, 
e1 or e2 or e3. The cybernetic method postulates that 
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the growth rate ri along a metabolic path is maximized 
when two sets of cybernetic variables, ui and vi 
(i = 1, 2, 3), follow the equations given below. A 
detailed explanation of the basis of these equations is 
too elaborate and not relevant to the present 
requirement. Kompala et al’s21 paper may be 
consulted for more information. 

i
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= =
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Briefly, the ui’s control the enzyme synthesis rates 
and the vi’s govern their activities. 

Kompala et al21 identified 8 key variables. These 
were the concentrations of cell mass, glucose, ethanol, 
oxygen and intra-cellular carbohydrate, and the 
activities of the three key enzymes. Storage 
carbohydrates, notably trehalose and glucogen, are 
accumulated inside the cells when there is deficiency 
of glucose and ethanol, and they are consumed if 
either of these substrates is present in appreciable 
quantities17. In a continuous culture, the dynamic 
mass balances for these variables follow the equation 
given below17. 
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The term α* in Eq. (10) was included on the 
recommendation of Turner and Ramkrishna22, who 
showed that a small constitutive synthesis term was 
required in order to predict correctly the induction of 
enzymes that have been repressed for long durations. 

The model is completed by adding the equations 
for the specific growth rates contained in Eqs (1)-(3). 
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Previous studies10,11,23,24 have shown that the 
performances of continuous and fed-batch bioreactors 
are sensitive to disturbances in the inflow rate of the 
substrate, which is also a manipulated variable for 
control25. These disturbances may be modelled 
satisfactorily by Gaussian distributions with means 
equal to the instantaneous flow rates and time-
dependent variances, optimised such that a prescribed 
objective function is maximized. In the cybernetic 
approach employed here for S. cerevisiae, the 
objective, as explained earlier, is the growth rate of 
biomass. So, to generate data mimicking a large-scale 
fermentation with disturbances in the feed stream, 
Gaussian noise of the kind described here was added 
to the dilution rate D in Eqs (6)-(8) and the full 
model, Eqs (1)-(12), was solved over the same 
duration of time, i.e. 76 hrs, as employed by Jones 
and Kompala17. The values of the parameters were 
also taken from their work and are listed in Table 1. 

The use of simulated data generated, as described 
above from kinetic models developed experimentally 
in the laboratory, has been justified by many 
authors13,14,26,27 for two reasons. Firstly, it circumvents 
the practical and proprietary restrictions on the 
availability of industrial data covering different 
scenarios. Secondly, simulations allow exploration of 
reactor performance under different conditions 
without damaging plant operation so as to evolve 
suitable optimisation and control policies for 
implementation11,12. 

Results and Discussion 
Figs 1-3 show the time-domain profiles of 

biomass, glucose and ethanol, (a) when there are no 
disturbances in the feed stream and (b) when 
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persistent noise is present. A significant difference 
between Fig. 1 and the other two figures is that noise 
destroys the regular periodicity of the cell mass 
profile but not those of glucose and ethanol. The 
profiles for carbohydrates and dissolved oxygen (not 
shown) were also not significantly affected by the 
inflow noise. 

These observations have important implications 
for the identification of process characteristics28, 
mechanism of oscillations and control of the 
bioreactor. It is evident that cell mass concentrations 
are the most sensitive to the presence of noise. On 
comparing the deterministic (noise-free) plots of this 
variable with those of others (Figs 1-3), at least three 
differences may be noted. Firstly, the cell mass 
concentrations are one to three orders of magnitude 
larger than other concentrations. Secondly, the 
variations in the cell mass concentrations without 
noise, measured in terms of the changing amplitude as 
a percentage of the mean value, are much smaller than 
for other variables. Thirdly, cells are discrete entities, 
whereas ethanol, glucose, dissolved oxygen and 
carbohydrate (within the domain of a cell) are 
continuous variables. The first two differences and 
similar results for another ethanol-producing 
organism, Zymomonas mobilis, which also exhibits 
oscillations in continuous cultures29, suggest that low-
amplitude oscillations whose mean values are large 
compared to those of other variables in the system are 
more likely to be destabilized by inflow disturbances. 
This inference, however, requires further 
substantiation. 

The difference in the effect of variations in the 
substrate feed rate on the performance variables were 
corroborated by their fractal dimensions in the case of 
Z. mobilis30. Similar support has been provided here 
for S. cerevisiae through periodograms and statistical 
measures. The closeness of the noise-free and noise-
affected profiles in Figs 2 and 3 and the preservation 
of periodicity are reflected in the narrow and 
practically indistinguishable periodograms (Figs 5 & 6). 
On the contrary, the two periodograms for cell mass 
concentration (Fig. 4) are wider and clearly separated. 
Similar inferences also follow from the statistics in 
Table 2. Although, the Pearson’s correlation 
coefficients31 are positive for all variables, the value 
for the cell mass is a quarter of the other values. 
Moreover, the P-value for cell mass is larger than 
0.05, whereas the others are nearly zero. These 

observations suggest that inflow disturbances upset 
the deterministic periodic changes in the cell mass 
concentrations more strongly than they do for glucose 
and ethanol. 

For fermentations without disturbances in the feed 
stream, some research workers32,33 have explained the 
observed oscillations in continuous cultures of S. 
cerevisiae by attributing them to cell cycle synchrony. 
However, the annihilation of periodicity in cell mass 
concentration, while largely preserving this feature for 
other variables when disturbances occur, suggests that 
other causes are possible. Jones and Kompala17 also 

Table 1 — Values of the parameters (from Jones and Kompala17) 

Parameter Units Value 

α g g-1 hr−1 0.3 

α* g g-1 hr−1 0.1 

β hr−1 0.7 

μ1, max hr−1 0.44 

μ2,max hr−1 0.19 

μ3,max hr−1 0.36 

φ1 g g−1 0.403 

φ2 mg g−1 2000.0 

φ3 mg g−1 1000.0 

φ4 g g−1 0.95 

γ1 g g−1 10.0 

γ2 g g−1 10.0 

γ3 g g−1 0.8 

G0 g l−1 28.0 

K1 g l−1 0.05 

K2 g l−1 0.01 

K3 g l−1 0.001 

2oK  mg l−1 0.01 

3oK  mg l−1 2.2 

kLa hr−1 225.0 

O* mg l−1 7.5 
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shared this view and proposed that dynamic 
competition between the three metabolic pathways—
glucose fermentation, ethanol oxidation and glucose 
oxidation—is the main cause of oscillations. 
Fluctuations in the feed stream cause rapid changes in 
the relative values of the fluxes through these 
pathways, and the present results indicate that the 
cells are not able to respond and adapt fast enough to 
these changes. This leads to a weakening of cell cycle 

synchrony (Fig. 1). A similar loss of periodicity was 
also observed for the specific growth rate (not 
shown), which is in consonance with Jones and 
Kompala’s17 thesis that a cyclic variation in the 
growth rate is the main driving force for cell cycle 
synchrony. 

The inability of the cells to keep pace with rapid 
changes in their environment has also been proposed 
to explain the behavior of Escherichia coli 

 
Fig. 1 — Profiles of cell mass concentration without noise and 

with Gaussian noise in the substrate flow rate. 

 
Fig. 2 — Profiles of glucose concentration without noise and with 

Gaussian noise in the substrate flow rate. 

 
Fig. 3 — Profiles of ethanol concentration without noise and with 

Gaussian noise in the substrate flow rate. 
 

 
Fig. 4 — Periodograms for cell mass concentration. The continuous 

plot is without noise, while the discontinuous plot is for a noise-
affected fermentation. 
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fermentations subjected to either deliberate cycling in 
the feed rate34 or environmental disturbances affecting 
the feed rate24. Since both E. coli and S. cerevisiae 
exhibit overflow metabolism and anaerobic 
metabolism, and are, therefore, sensitive to excess 
glucose as well as oxygen limitation1,8; the differences 
in the effects of feed rate fluctuations on cell growth 
and on glucose and oxygen concentrations in the 
broth have important implications for bioreactor 
control. Although, a discussion of the control of 
oscillatory fermentations is not within the scope of the 
study, it is useful to recognize some implications of 
the preceding observation: 

(1) The changes in periodic behaviour induced by 
disturbances may render any model-based 
deterministic control algorithm inappropriate 
or non-optimal. 

(2) Hybrid control strategies should be preferred 
under such nonideal conditions7,13; however, 
differences in the time-dependences of 
different variables (Figs 1-3) require unequal 
sampling intervals and piecewise optimisation 
over successive time slices35. 

(3) While the flow rate of glucose is an established 
manipulated variable25, the dissolved oxygen 
concentration may be controlled through the 

airflow rate or the stirring speed. Since these 
two variables maintain substantial synchrony 
between them (Figs 2 & 3) even in the 
presence of noise but lose synchrony with the 
cell mass (Fig. 1), any control system should 
accommodate this kind of partial and variable 
synchrony. Intelligent heuristic systems are 
better equipped to handle such situations than 
model-based controllers35,36. 

Conclusions 
Under disturbance-free laboratory conditions, the 

yeast S. cerevisiae shows steady oscillations with time 

 
Fig. 5 — Periodograms for glucose concentration. The two 

periodograms,  with noise and without noise, are almost 
coincident and therefore indistinguishable. 

 
Fig. 6 — Periodograms for ethanol concentration. As in Fig. 5, 
the disturbance-free and disturbance-affected periodograms are 

indistinguishable. 
 

Table 2 — Statistical measures correlating noise-free and noise-
affected concentrations 

Concentration 
variable 

Pearson’s correlation 
coefficient 

P-value 

Cell mass 0.262 0.135 

Dissolved oxygen 0.975 10−22 

Glucose 0.937 10−15 

Carbohydrate 0.992 10−28 

Ethanol 0.994 10−31 
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in continuous cultures. While some authors32,33 have 
attributed this to cell synchrony, others17,21 consider 
dynamic competition between three metabolic 
pathways to be the cause and cell synchrony a 
consequence of this. 

As important as the debate on the mechanism of 
metabolic oscillations is its manifestation under the 
disturbed conditions that occur in industrial 
environments. Since it is known that bacterial 
fermentations, both oscillatory29,30 and non-
oscillatory8,24, perform differently in ‘ideal’ 
conditions and while disturbances occur, the present 
investigation has been applied to oscillating 
continuous cultures of a budding yeast. To simulate 
industrial conditions, Gaussian noise was added to the 
substrate flow rate as explained in the text. 

For a fermentation displaying periodic variations 
in the concentrations of cell mass, substrate (glucose), 
product (ethanol), storage carbohydrate and dissolved 
oxygen, the onset of disturbances destroyed 
periodicity in the cell mass concentration but did not 
severely affect the other variables. This is not to 
suggest that the other concentrations were unaffected 
but it indicates that the cell mass is the most sensitive 
variable to be monitored and controlled. These 
differences were corroborated by periodograms and 
statistical measures. While the noise-free and noise-
affected periodograms of the cell mass concentration 
were wide, conspicuously elliptical and 
distinguishable, these pairs for the other 
concentrations were narrow and indistinguishable. 

Since the metabolic processes involve interactions 
among all variables, the differences in the effects of 
feed fluctuations have important implications for 
bioreactor monitoring and control. The complexity of 
yeast metabolism and the time-varying degrees of 
synchrony among the oscillations in different 
variables suggest that intelligent heuristic controllers 
will work better than model-based controllers in 
production conditions7,35,36. 

Nomenclature 
C intra-cellular storage carbohydrate concentration 

(g g−1 biomass) 
D dilution rate (hr−1) 
ei key enzyme concentration for i-th pathway (g g−1 biomass) 
E ethanol concentration (g l−1) 
G glucose concentration (g l−1) 
G0 inlet glucose concentration (g l−1) 

Ki Michaelis constant for i-th pathway (g l−1) 

2oK  saturation constant for ethanol oxidation (mg l−1) 

3oK  saturation constant for glucose oxidation (mg l−1) 

kLa oxygen mass transfer coefficient (hr−1) 
O dissolved oxygen concentration (mg l−1) 
O* dissolved oxygen solubility limit (mg l−1) 
ri cell growth rate for i-th pathway (hr−1) 
Si carbon substrate concentration for i-th pathway (g l−1) 
t time (hr) 
ui i-th pathway cybernetic variable controlling enzyme 

synthesis (−) 
vi i-th pathway cybernetic variable controlling enzyme 

activity (−) 
X cell mass concentration (g l−1) 
Yi yield coefficient for i-th pathway (g biomass g−1 substrate) 

Greek letters 
α specific enzyme synthesis rate (hr−1) 
α* constitute enzyme synthesis rate (hr−1) 
β specific enzyme degradation rate (hr−1) 
φi,γi stoichiometric parameters (g g−1) 
μi specific growth rate for i-th pathway (hr−1) 
μi,max maximum specific growth rate for i-th pathway (hr−1) 
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