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PreclinicalTesting of ClinicallyApplicable Strategies for Overcoming
Trastuzumab Resistance Caused by PTENDeficiency
Chien-Hsing Lu,1Shannon L. Wyszomierski,1Ling-Ming Tseng,1Meng-Hong Sun,1Keng-Hsueh Lan,1

Christopher L. Neal,1Gordon B.Mills,2 Gabriel N. Hortobagyi,3 Francisco J. Esteva,1,3 and Dihua Yu1

Abstract Purpose:We have previously shown that PTEN loss confers trastuzumab resistance in ErbB2-
overexpressing breast cancer using cell culture, xenograft models, and patient samples. This is a
critical clinical problem because trastuzumab is used in a variety of therapeutic regimens, and at
the current time, there are no established clinical strategies to overcome trastuzumab resistance.
Here, we did preclinical studies on the efficacy of clinically applicable inhibitors of the Akt/
mammalian target of rapamycin (mTOR) pathway to restore trastuzumab sensitivity to PTEN-
deficient cells.
Experimental Design: Cell culture and xenograft models were used to test a panel of clinically
applicable, small-molecule inhibitors of the Akt/mTOR signal transduction pathway, a critical
pathway downstream of ErbB2, and identify compounds with the ability to restore trastuzumab
sensitivity to PTEN-deficient cells.
Results:When trastuzumab was combined with the Akt inhibitor triciribine, breast cancer cell
growthwas inhibited andapoptosis was induced. In a xenograftmodel, combination therapywith
trastuzumab and triciribine dramatically inhibited tumor growth.The combination of trastuzumab
and the mTOR inhibitor RAD001also slowed breast cancer cell growth in vitro and in vivo.
Conclusions: Combining trastuzumab with inhibitors of the Akt/mTOR pathway is a clinically
applicable strategy and combinations of trastuzumab with triciribine or RAD001are promising
regimens for rescue of trastuzumab resistance caused by PTEN loss.

Breast cancer patients whose tumors overexpress the ErbB2
receptor tyrosine kinase have poor overall survival and shorter
time to relapse (1). ErbB2 (HER2, Neu) activates the phospha-
tidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapa-
mycin (mTOR) pathway, which promotes proliferation and
invasion and inhibits apoptosis. Trastuzumab (Herceptin;
Genentech) is a humanized monoclonal antibody that targets

ErbB2. When given with adjuvant chemotherapy, trastuzumab
significantly improves disease-free survival following surgical
removal of ErbB2-positive breast tumors (2, 3). However, the
overall response to trastuzumab is limited. Less than 30% of
patients with ErbB2-positive tumors have a durable response to
trastuzumab as a single agent and 2% to 5% will suffer from
clinical cardiac dysfunction as a side effect (4, 5). We previously
investigated the mechanisms of trastuzumab resistance and
discovered an important novel mechanism. Trastuzumab
treatment increased PTEN phosphatase activity and PTEN
was required for the antitumor activity of trastuzumab (6).
Moreover, PTEN loss predicted poor clinical response to
trastuzumab-based chemotherapy in patients (6). Because
PTEN opposes the actions of PI3K, we proposed a strategy
to overcome trastuzumab resistance using PI3K inhibitors. We
showed a synergistic inhibition of tumor growth following
combination treatment of trastuzumab and wortmannin or
LY294002 in vitro and in vivo (6). However, these drugs have
poor clinical potential and are unlikely to become available
to clinical oncologists. Both act nonspecifically on other PI3K
family members (7). Wortmannin has a short half-life (8) and
LY294002 causes an untoward patchy dermatitis in animal
models (9). Thus, they have not been used in clinical trials
despite antitumor activities in vitro and in vivo (10). In the
current study, we focused on compounds with clinical
potential, limiting our study to inhibitors that were either
in clinical trials, under development for clinical trials, or
previously tested in patients. We obtained six small-molecule
inhibitors of the PI3K pathway and examined their preclinical
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efficacy in combination with trastuzumab for treating PTEN-
deficient breast tumors. We identified two compounds with
the ability to rescue trastuzumab sensitivity in PTEN-deficient
cells.

Materials andMethods

Cell lines and cell cultures. The tumorigenic BT474.m1 subline was
a gift from Dr. Dajun Yang (Georgetown University, Washington, DC).
It was maintained in DMEM/Ham’s F-12 (1:1) with 8% to 10% fetal
bovine serum.

Antibodies and reagents. Trastuzumab was a gift from Genentech.
RAD001 (everolimus) was a gift from Novartis. QLT0267 and KP 372-1
were gifts from QLT, Inc. Triciribine [6-amino-4-methyl-8-(h-D-ribofur-
anosyl)-4H ,8H-pyrrolo[4,3,2-de]pyrimido[4,5-c]pyridazine] was pur-
chased from Berry & Associates, Inc. Edelfosine was purchased from
Calbiochem. A selective Akt inhibitor, 4ADPIB [4-amino-2-(3,4-
dichloro-phenyl)-N -(1H -indazol-5-yl)-butyramide; U.S. patent
6,919340], was synthesized. PTEN antibodies were from Santa Cruz
Biotechnology. h-Actin antibodies were from Sigma. All other anti-
bodies were purchased from Cell Signaling Technology.

PTEN antisense and nonspecific oligonucleotide transient transfec-

tion. Antisense oligonucleotides specific for PTEN, control nonspecific
oligonucleotides, and procedures for transfection have been described
previously (6).

Cell proliferation assay. PTEN antisense/nonspecific-transfected
BT474.m1 cells were plated (2,500/0.32 cm2 well). Cells were treated
with inhibitors of the Akt/mTOR pathway alone or in combination
with trastuzumab as described for 5 days, and viable cells were
measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-
phenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay using the CellTiter96
AQ nonradioactive cell proliferation assay kits according to the
manufacturer’s protocol (Promega; ref. 6). Treated cells were compared
with control DMSO-treated BT474.m1 cells to calculate percentage of
growth inhibition.

APO-BrdU terminal deoxynucleotidyl transferase–mediated dUTP nick
end labeling assay. The PTEN antisense- and nonspecific-transfected
BT474.m1 cells were plated in six-well plates (4 � 105 to 6 � 105 per
well). Twenty-four hours after plating, the cells were treated as indi-
cated for 72 h with trastuzumab, triciribine, and/or RAD001. The
floating and adherent cells were collected, labeled, and stained using
the APO-BrdU terminal deoxynucleotidyl transferase–mediated dUTP
nick end labeling assay kit (Phoenix Flow Systems) according to the
manufacturer’s protocol. Data were collected and analyzed using a
FACScan flow cytometer and CellQuest Pro 4.02 software (Becton
Dickinson). At least 10,000 events were examined.

SDS-PAGE and immunoblot analysis. Cells transfected with PTEN
antisense/nonspecific oligonucleotides were treated as indicated.
Immunoblotting was done as described previously (6).

Xenograft human tumor model in severe combined immunodeficient

mice. Female, 6-week-old, severe combined immunodeficient mice
were from Taconic Farms. Tumor xenografts were done as described
previously (6). When the xenograft tumors reached the average size of
100 to 150 mm3, the mice were divided into six groups, each with seven
mice and an even distribution of tumor sizes, and treated as follows.
PTEN antisense (30 Ag) oligonucleotides were given to each mouse
weekly via intratumor injection. One week after PTEN antisense
oligonucleotide administration was initiated, drug treatment began.
Trastuzumab was given at a dose of 0.5 mg/kg twice weekly in 200 AL
saline through intratumor injection at multiple sites. Triciribine was
given at a dose of 0.5 mg/kg/d in 200 AL 20% DMSO saline solu-
tion through i.p. injection. RAD001 was given via gavage at a dose of
1 Ag/kg in 500 AL 5% glucose water twice weekly. Twenty percent
DMSO saline solution (200 AL/d) was given through i.p. injection. The
tumors were measured twice weekly with calipers and the volume of
the tumors was calculated as follows: volume = length � width2 / 2.

Statistical analysis. One-way ANOVA was done using GraphPad
Prism 3.0 for Windows (GraphPad Software).

Results

Triciribine and RAD001 potentiate growth inhibition by
trastuzumab in PTEN-deficient cells. To find a strategy to
overcome trastuzumab resistance, particularly resistance caused
by PTEN loss, we tested six different small-molecule inhibitors,
which directly or indirectly targeted the PI3K/Akt/mTOR signal
transduction pathway, a major pathway activated by over-
expression of ErbB2 and the loss of PTEN. Our goal was to
identify compounds that would exhibit synergistic effects with
trastuzumab, preferably at a low dose of the compound to
minimize toxicity. The drugs we chose targeted Akt, mTOR, and
integrin-linked kinase (Table 1). BT474.m1 cells are a
tumorigenic subline of the BT474 breast cancer cell line and
express high levels of ErbB2. When PTEN levels are decreased
by transfection with PTEN antisense oligonucleotides,
BT474.m1 breast cancer cells become more resistant to the
antiproliferative effects of trastuzumab than cells with normal
levels of PTEN and provide a good experimental model for
breast cancers in which trastuzumab resistance is caused by
PTEN loss (Fig. 1A and B; ref. 6). Nonspecific oligonucleotides
were transfected as controls. Treatment with PTEN antisense
oligonucleotides effectively lowered PTEN levels (Fig. 3A
and B). Neither PTEN antisense nor nonspecific control
oligonucleotides altered ErbB2 levels in the cells (Supplemen-
tary Fig. S1; data not shown).
We treated PTEN antisense- and nonspecific-transfected

BT474.m1 cells with each of the six compounds or trastuzumab
alone and in combination for 5 days and evaluated cell pro-
liferation compared with DMSO-treated control. Using growth
inhibition as a biological end point, we compared the ability
of each drug to exhibit cooperative effects with trastuzumab
using doses of drug that resulted in approximately 20% to 40%
growth inhibition when given alone (Table 1).
Almost all of the compounds displayed growth-inhibitory

effects, particularly at high concentrations and in cells with
intact PTEN (Table 1; Supplementary Figs. S2 and S3).
However, two of the compounds, triciribine and RAD001,
markedly enhanced growth inhibition in the PTEN antisense
cells when combined with trastuzumab compared with
trastuzumab or either compound alone (Table 1). Triciribine
(also called API-2), a compound that inhibits Akt activation,
potentiated growth inhibition by trastuzumab over a 20-fold
concentration range (Fig. 1A; data not shown). The mTOR
inhibitor RAD001 (everolimus) increased growth inhibition by
trastuzumab when RAD001 was given at low doses (<1 nmol/L;
Fig. 1B). Strikingly, triciribine and RAD001 were able to
cooperate with trastuzumab to inhibit cell growth at similar
levels in the PTEN antisense and nonspecific cells (Fig. 1A and
B). In essence, triciribine and RAD001 were able to restore
trastuzumab sensitivity to PTEN-deficient cells. Triciribine and
RAD001 were also effective as single agents, both in PTEN
antisense and nonspecific cells, at doses greater than 5 Amol/L
and 1.5 nmol/L for triciribine and RAD001, respectively
(Fig. 1A and B).
A third compound, the integrin-linked kinase inhibitor

QLT0267, potentiated growth inhibition by trastuzumab
within a narrow dose range (f5-15 Amol/L; Table 1;
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Supplementary Fig. S3). Because the dose range in which
QLT0267 exhibited cooperative effects with trastuzumab was
narrow, we did not investigate this compound further. At con-
centrations >20 Amol/L, QLT0267 had no cooperative effect
with trastuzumab but significantly inhibited cell growth as a
single agent (Supplementary Fig. S3).

Induction of apoptosis following combination treatment. To
assess if growth inhibition was accompanied by apoptosis, we
treated PTEN antisense- and nonspecific-transfected BT474.m1
cells with triciribine, RAD001, and trastuzumab, alone or com-
bined, and quantified the levels of apoptosis (Fig. 2). RAD001
did not significantly induce apoptosis alone or in combination

Table 1. Panel of Akt/mTOR inhibitors

Drug Target % Growth inhibition in PTEN antisense BT474.m1 cells Trastuzumab + drug significantly
better than either alone?

Trastuzumab only Drug only Trastuzumab + drug

Triciribine Akt 9.5 F 4.2 19.2 F 9.2 36.6 F 3.3 Yes (P < 0.001)
KP 372-1 Akt 0 F 4.1 36 F 2.1 38.8 F 3.2 No
4ADPIB Akt 0.9 F 9.7 23.7 F 2.4 32.2 F 3.4 No
Edelfosine Akt 2.2 F 9.6 41.8 F 1.2 51.9 F 2.3 No
RAD001 mTOR 10.9 F 4.9 19.3 F 2.5 33.7 F 1.4 Yes (P < 0.05)
QLT0267 ILK 20 F 6.8 30.3 F 8.4 44.8 F 6.9 Yes (P < 0.05)

NOTE: Growth inhibition was assessed in PTEN antisense-transfected BT474.m1 cells. Each compound was tested individually at multiple doses
(see Supplementary Figs. S2 and S3). Doses shown are as follows: triciribine, 1 Amol/L; RAD001, 0.2 nmol/L; QLT0267, 10 Amol/L; KP 372-1,
0.05 Amol/L; 4ADPIB, 5 Amol/L; edelfosine, 7.5 Amol/L; and trastuzumab, 2 Ag/mL. The SD in the percentage growth inhibition is indicated.
Results shown are the combined data from two to three experiments with triplicates of each treatment within each experiment.
Abbreviation: ILK, integrin-linked kinase.

Fig. 1. Growth inhibition by the combination of trastuzumab and Akt/mTOR pathway inhibitors. PTEN antisense or nonspecific oligonucleotide-transfected BT474.m1cells
were treated with inhibitors of theAkt/mTOR pathway alone or in combination with trastuzumab, and the relative cell growth was assessed. A, triciribine (TCN) inhibits cell
growth in combination with trastuzumab (Ttzm). BT474.m1cells were transfected with PTEN antisense (AS) oligonucleotide or nonspecific (NS) oligonucleotide, treated
with trastuzumab and triciribine, alone and in combination atmultiple doses of triciribine, and assayed for growth inhibition.Trastuzumabwas given at a single concentration.B,
RAD001 (RAD) inhibits cell growth in combination with trastuzumab. BT474.m1cells were transfected with PTEN antisense oligonucleotide or nonspecific oligonucleotide,
treated with trastuzumab and RAD001, alone and in combination at multiple doses of RAD001, and assayed for growth inhibition. Asterisk, significant difference in growth
inhibition following combination treatment compared with either trastuzumab or triciribine/RAD001alone. P < 0.05 was considered significant. Columns, mean; bars, SE.

Strategies for OvercomingTrastuzumab Resistance
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with trastuzumab. Although the number of terminal deoxy-
nucleotidyl transferase–mediated dUTP nick end labeling–
positive apoptotic cells increased slightly following treatment
with trastuzumab or triciribine alone, this increase was not
statistically significant. However, the combination of triciribine
and trastuzumab significantly induced apoptosis compared
with all other treatments in both PTEN antisense- and
nonspecific-transfected cells (Fig. 2).
Inhibition of downstream signaling molecules. Next, we did

immunoblot analysis to verify that triciribine and RAD001
blocked activation of Akt and mTOR, important signaling
molecules activated by ErbB2 and the targets of triciribine and
RAD001, respectively. Phosphorylation of Akt on Thr308

and Ser473 was analyzed as an indicator of Akt activity, and
mTOR activity was assessed by the phosphorylation of p70S6K
(70-kDa ribosomal protein S6 kinase), a mTOR target. After
triciribine treatment, phosphorylation of Akt on both sites
was substantially decreased (Fig. 3A). In PTEN-deficient cells,
the levels of Akt phosphorylation following triciribine and
trastuzumab combination treatment were similar to those seen
in cells with intact PTEN (Fig. 3A, lanes 4 and 8). Thus, tri-
ciribine overcame the adverse effects of PTEN loss by effectively
blocking Akt activation.
RAD001 dramatically blocked phosphorylation of p70S6K

(Fig. 3B). However, RAD001 combined with trastuzumab did
not lower p70S6K phosphorylation beyond that seen with
RAD001 alone (Fig. 3B). A feedback loop has been recently
identified, which results in Akt phosphorylation and activa-
tion following treatment with mTOR inhibitors, such as
RAD001 (11). We also observed feedback activation of Akt
by RAD001 and combination therapy with trastuzumab and
RAD001 eliminated Akt phosphorylation by this feedback loop
(Fig. 3B, lane 3 versus lane 4), consistent with the notion that
Akt activation following mTOR inhibition is dependent on
upstream receptor tyrosine kinases (11). In summary, both drugs
inhibited their predicted target kinases and combination treat-

ment had a larger inhibitory effect on the Akt/mTOR signaling
pathway than any single agent even in PTEN-deficient cells.
Inhibition of tumor growth in a severe combined immunode-

ficient mice xenograft model. The above biological and mole-
cular data were very promising; however, in vivo studies
provide the most stringent test for therapeutic efficacy.
Therefore, we tested triciribine and RAD001 in vivo . BT474.m1
cell xenografts were injected into the mammary fat pad of 6-
week-old severe combined immunodeficient mice. After tumors
formed, the mice received PTEN antisense weekly via intratumor
injection. This protocol effectively models PTEN-deficient
tumors in vivo (6). The mice were randomized into treatment
groups receiving triciribine, RAD001, trastuzumab, or DMSO
alone or in combination. After treatment, the growth patterns of
the tumors treated with DMSO, trastuzumab, RAD001, or
triciribine alone were similar (Fig. 4A and B). Growth of the
tumors was not inhibited and the mice were euthanized after
3 weeks due to large tumor burdens. In contrast, combination
treatment with triciribine and trastuzumab dramatically and
significantly inhibited tumor growth (Fig. 4A). Many of the
tumors actually decreased in size and four of seven mice had

Fig. 3. Inhibition of Akt and p70S6K activity.To evaluate the effects of these drugs
on theAkt/mTOR pathway, PTEN antisense and nonspecific oligonucleotides were
transfected into BT474.m1cells.Two days later, the cells were treated for 2 h with
trastuzumab and triciribine (A) or trastuzumab and RAD001 (B).Total cell lysates
were collected, separated by SDS-PAGE, and immunoblotted as indicated.The
concentration of trastuzumab was 2 Ag/mL, triciribine was 2.5 Amol/L, and
RAD001was 0.4 nmol/L.The experiments were repeated at least twice to insure
that results were reproducible.

Fig. 2. Synergistic effects on apoptosis.Twenty-four hours after plating, PTEN
antisense- and nonspecific-transfected BT474.m1cells were treated as indicated
with trastuzumab, triciribine, and/or RAD001at the following concentrations:
trastuzumab, 2 Ag/mL; triciribine, 2.5 Amol/L; and RAD001, 0.4 nmol/L. APO-BrdU
terminal deoxynucleotidyl transferase ^ mediated dUTP nick end labeling assays
were done to assess apoptosis.The experiment was done thrice. Columns, mean
apoptosis; bars, SD.Trastuzumab + triciribine treatment significantly induced
apoptosis (P < 0.01) compared with all other treatments.
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no palpable tumors after 5 weeks of treatment (data not
shown). Following treatment with RAD001 and trastu-
zumab, tumor growth was relatively slower compared with
RAD001 or trastuzumab alone (Fig. 4B). Thus, combining
trastuzumab with triciribine or RAD001 effectively inhibited
ErbB2-overexpressing, PTEN-deficient human breast cancer
xenografts in vivo.

Discussion

Because PTEN loss is one important mechanism underlying
trastuzumab resistance in ErbB2-overexpressing breast cancers,
we hypothesized that targeting molecules downstream of
ErbB2, PI3K, and PTEN could overcome trastuzumab resis-
tance. After testing six currently available small-molecule
inhibitors that target the Akt/mTOR pathway, we identified
two, triciribine and RAD001, which restored trastuzumab
sensitivity in vitro and in vivo to breast cancer cells that were
previously trastuzumab resistant due to PTEN loss.
In addition to our strategy of combining clinically applicable

PI3K/Akt pathway inhibitors and trastuzumab, several other
strategies have also been proposed to overcome trastuzumab
resistance based on preclinical findings (reviewed recently in

ref. 12). These include combining trastuzumab with other
ErbB2-targeting antibodies, such as 2C4 (Omnitarg), or with
tyrosine kinase inhibitors that block multiple members of the
epidermal growth factor receptor/ErbB family, such as lapatinib
(13–17); combining trastuzumab with anti-insulin-like growth
factor-I receptor antibodies or insulin-like growth factor-I
receptor kinase inhibitors (18, 19); and combining trastuzu-
mab with proteasome inhibitors, such as bortezomib, which
increase both PTEN and p27 expression levels (20, 21). All of
these proposed strategies are supported by convincing preclin-
ical data, and clinical trials are clearly necessary to deduce
how these strategies may improve patient outcome. The
potential benefits of combining trastuzumab with triciribine
and RAD001 are discussed below.
Triciribine is a tricyclic nucleoside that was first synthesized in

1971 (22) and identified as an antineoplastic agent (10). Phase I
clinical trials on triciribine proved that its safety and side effects
were dose dependent (10, 23, 24). However, as a single drug
in phase II trials, triciribine failed to show efficacy against
advanced breast, colon, and lung cancer even at very high doses
(23, 24). A few years ago, triciribine was found to inhibit Akt2
activation and have antitumor activity as a single agent against
tumors with activated Akt (25). Thus, phase I trials of triciribine
have been initiated for tumors with activated Akt using much
lower doses of triciribine than those previously used that caused
hepatotoxicity (10). In our study, triciribine restored trastuzu-
mab sensitivity in PTEN-deficient breast tumor cells. This new
combination was cytotoxic and quite effective in our preclinical
experiments. The effect may be specific to triciribine, as several
Akt inhibitors (KP 372-1, 4ADPIB, and edelfosine) did not
potentiate growth inhibition by trastuzumab. Whether this
difference may be attributed to the magnitude, kinetics, or
mechanism of Akt inhibition by triciribine or to an additional
off-target activity of triciribine is unknown. Furthermore, our
dose titration data suggest that triciribine may be beneficial at
low doses in rationally designed combination therapies. A
renaissance of the 30-year-old drug may be justified.
The mTOR inhibitor RAD001 is an orally bioavailable

rapamycin derivative (26). Although, our data showed only
an incremental improvement in tumor inhibition by RAD001
in combination with trastuzumab in vivo , this may reflect the
model system, pharmacodynamics, or metabolic differences
between mice and humans. Therefore, it still holds promise as a
therapeutic agent because of its low toxicity and its effects
at even nanomolar concentrations. Numerous phase I and II
clinical trials are ongoing with RAD001 (26). RAD001 is not
cytotoxic but has been found to chemosensitize p53-intact
tumor cells to DNA damage–induced apoptosis through
inhibition of p21 translation (27). Trastuzumab does not cause
DNA damage. Thus, the combination of RAD001 and
trastuzumab might be more effective in vivo if a cytotoxic,
DNA-damaging agent was added to the cocktail or if the dose of
RAD001 was increased.
In our experiments, RAD001 treatment activated Akt. Other

investigators have recently reported this feedback regulation of
Akt by rapamycin and its derivatives as well (11, 28, 29). This
feedback activation of Akt was PI3K and insulin-like growth
factor-I receptor dependent in MCF-7 and MDA-MB-468 breast
cancer cells, and inhibition of insulin-like growth factor-I
receptor enhanced the antitumor effects of rapamycin in those
cells (11). In our experiments, combination therapy with

Fig. 4. Combination treatments inhibited tumor growth in a severe combined
immunodeficient mice xenograft model. Severe combined immunodeficient
mice received BT474.m1breast cancer cell xenografts in mammary fat pad.The
xenografts grew for 3 wk to generate tumors with an average size of100 to150
mm3. PTEN antisense oligonucleotides trastuzumab, triciribine (A), and RAD001
(B) were given as described in Materials and Methods.The tumors were measured
twice weekly with calipers and tumor size was averaged for each treatment group.
Points, mean; bars, SE. Asterisk, significant difference in growth inhibition following
combination treatment compared with either trastuzumab, triciribine, or DMSO
alone. P < 0.05 was considered significant.
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trastuzumab and RAD001 eliminated Akt activation following
mTOR inhibition and may have enhanced the antitumor effects
of RAD001. Determining the molecules downstream of ErbB2
that mediate this feedback loop is clearly an area for future
investigation. Taken together, the findings suggest that mTOR
inhibitors may be most effective as antineoplastic agents when
combined with an inhibitor of an appropriate upstream
receptor tyrosine kinase.
In conclusion, we found that combining trastuzumab with

triciribine or RAD001 may be a clinically applicable strategy
to overcome trastuzumab resistance, particularly that caused by
PTEN loss. Trastuzumab resistance is a clinically devastating

problem. These studies suggest a rational improvement to
trastuzumab-based therapy, which could directly affect the
clinical management of breast cancer patients in general and
particularly those with PTEN-deficient tumors (f40%; ref. 30).
Clinical trials are clearly warranted to further these studies and
have been initiated.
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