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Strong EGFR signaling in cell line models of ERBB2-amplified
breast cancer attenuates response towards ERBB2-targeting drugs
F Henjes1, C Bender1, S von der Heyde2, L Braun3, HA Mannsperger1, C Schmidt1, S Wiemann1, M Hasmann4, S Aulmann3, T Beissbarth2

and U Korf1

Increasing the efficacy of targeted cancer therapies requires the identification of robust biomarkers suitable for patient
stratification. This study focused on the identification of molecular mechanisms causing resistance against the anti-ERBB2-directed
therapeutic antibodies trastuzumab and pertuzumab presently used to treat patients with ERBB2-amplified breast cancer.
Immunohistochemistry and clinical data were evaluated and yielded evidence for the existence of ERBB2-amplified breast cancer
with high-level epidermal growth-factor receptor (EGFR) expression as a separate tumor entity. Because the proto-oncogene EGFR
tightly interacts with ERBB2 on the protein level, the hypothesis that high-level EGFR expression might contribute to resistance
against ERBB2-directed therapies was experimentally validated. SKBR3 and HCC1954 cells were chosen as model systems of EGFR-
high/ERBB2-amplified breast cancer and exposed to trastuzumab, pertuzumab and erlotinib, respectively, and in combination. Drug
impact was quantified in cell viability assays and on the proteomic level using reverse-phase protein arrays. Phosphoprotein
dynamics revealed a significant downregulation of AKT signaling after exposure to trastuzumab, pertuzumab or a coapplication
of both antibodies in SKBR3 cells but no concomitant impact on ERK1/2, RB or RPS6 phosphorylation. On the other hand, signaling
was fully downregulated in SKBR3 cells after coinhibition of EGFR and ERBB2. Inhibitory effects in HCC1954 cells were driven by
erlotinib alone, and a significant upregulation of RPS6 and RB phosphorylation was observed after coincubation with pertuzumab
and trastuzumab. In summary, proteomic data suggest that high-level expression of EGFR in ERBB2-amplified breast cancer cells
attenuates the effect of anti-ERBB2-directed antibodies. In conclusion, EGFR expression may serve as diagnostic and predictive
biomarker to advance personalized treatment concepts of patients with ERBB2-amplified breast cancer.
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INTRODUCTION
The family of epidermal growth-factor receptors (EGFRs) consists
of four members: EGFR, ERBB2 (HER2), ERBB3 and ERBB4.
Overexpression of the orphan receptor ERBB2 was found in
20–25% of breast tumors and has been associated with poor
prognosis and short overall survival of breast cancer patients.1

Ligand-activated ERBB family members preferentially dimerize
with ERBB2,2 which prolongs the internalization rate of ERBB2-
containing heterodimers3 resulting in amplified, sustained and
prolonged signaling.4,5 Accordingly, ERBB2 has long been
recognized as a promising therapeutic target. Trastuzumab, a
humanized monoclonal antibody,6 was approved by the Food and
Drug Administration in 1998 as the first therapeutic antibody to
treat patients with ERBB2-amplified metastatic breast cancer and
is today mostly used in combination with conventional chemo-
therapeutics.7 Clinical trials have demonstrated a significant
benefit of trastuzumab for various adjuvant treatment regimens
of early non-metastasized breast cancer.8 The molecular basis
underlying the clinical efficacy of trastuzumab is multifaceted and
different mechanisms are involved.9,10–13 For example,
trastuzumab has been reported to disrupt ligand-independent
ERBB2/ERBB3 heterodimer formation in ERBB2-overexpressing

cells, thus leading to ERBB3 inactivation.14 The ERBB2-targeting
antibody pertuzumab was tailored to prevent heterodimerization
of ERBB2 with ligand-activated ERBB receptors.15 Thus, a
combined application of trastuzumab and pertuzumab should
cause an immediate disruption of ERBB2-containing dimers and
inhibit a dimerization of ERBB2 with ligand-activated receptors.
The therapeutic efficacy of trastuzumab and pertuzumab as
combinatorial treatment was explored in mouse xenograft models
of ERBB2-positive breast cancer, and the results demonstrated a
strongly enhanced antitumor activity compared with single-drug
treatments.16 Ongoing clinical trials assess the benefit of
trastuzumab plus pertuzumab as the standard therapy for
ERBB2-amplified human breast cancer.17,18 However, de novo
resistance against trastuzumab and/or pertuzumab was reported
for various cell line models of human ERBB2-amplified breast
cancer,19–21 and the elucidation of resistance mechanisms might
result in the identification of biomarkers for further clinical
validation. A likely target is EGFR, a well-known proto-
oncogene,22 because this receptor is stabilized by ERBB2 on the
protein level as revealed by combinatorial small interfering RNA
strategies.21 Small-molecule drugs, such as erlotinib, target the
EGFR kinase domain and prevent signal propagation in a ligand-
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independent way. Erlotinib has been approved for the treatment
of locally advanced or metastatic non-small cell lung cancer and,
in combination with gemcitabine, for locally advanced and
unresectable or metastatic pancreatic cancer.23 Therefore,
targeting EGFR in addition to ERBB2 might be an efficient
strategy for ERBB2-amplified tumors that additionally express
EGFR. Recently, ERBB2-amplified breast cancer with high-level
phosphorylation of EGFR was, based on its poor clinical outcome,
suggested to represent a separate molecular entity.24 Besides that,
case studies on a coapplication of trastuzumab and anti-EGFR
drugs, for example, gefitinib, demonstrated clinical benefit in
ERBB2-positive breast cancer of patients whose tumors stained
positive for EGFR.25

Both receptors, EGFR and ERBB2, activate MAPK as well as PI3K/
AKT signaling cascades. Although EGFR mainly activates MAPK
signaling, ERBB2 phosphorylation stimulates both the pathways.26,27

ERBB3 was identified as a kinase-defective receptor and therefore
requires cross-activation by other ERBB family members as
prerequisite for a potent initiation of PI3K/AKT signaling.28,29 Thus,
EGFR/ERBB2 dimers can induce phosphorylation of AKT, although
less efficiently compared with ERBB2/ERBB3 complexes.30 Signals
from both the pathways, PI3K/AKT and MAPK, merge on the level of
the protein kinase p70S6K, which controls cellular protein synthesis
via phosphorylation of RPS6. In addition, activated p70S6K exerts a
direct negative feedback on receptor tyrosine kinase signaling via
inhibition of IRS1.31

This study aimed to evaluate the benefit of anti-EGFR inhibitors
in cell line models of ERBB2-amplified breast cancer with de novo
resistance against trastuzumab and/or pertuzumab19,20,32 by
measuring ERK1/2 and AKT phosphorylation rates as central
players of fast downstream signaling.33,34 To assess the impact of
drug on cell growth and proliferation, dynamics of RPS6 and RB
phosphorylation was additionally monitored. Reverse-phase
protein arrays (RPPA) with near-infrared fluorescent readout
were used to obtain quantitative proteomic data.35 To ascertain
clinical significance of this study, tumor samples were analyzed by
immunohistochemistry for coexpression of EGFR in ERBB2-positive
breast cancer specimens.

RESULTS
Validation of SKBR3 and HCC1954 cells as model systems of EGFR-
high/ERBB2-amplified human breast cancer
Cell lines such as SKBR3 and HCC1954, both with amplified ERBB2
and high abundance of EGFR, represent well-accepted model
systems of ERBB2-positive breast cancer. Western blot analysis and
quantitative PCR data confirmed a high-level expression of EGFR
and ERBB2 and revealed that ERBB3 is of higher abundance in

SKBR3 cells, whereas HCC1954 cells produce the receptor tyrosine
kinase c-MET (Supplementary Figure S1B). ERBB4 expression was
very low at the transcript level and not detectable by western blot
in either cell line (data not shown). ERK1/2 and AKT were present
in comparable amounts in both cell lines, whereas a much
stronger expression of RPS6 was seen in SKBR3 cells
(Supplementary Figure S1C). The phosphorylation rate of ERK1/2
in SKBR3 cells did not change upon starvation in line with other
results (Supplementary Figure S1D).36 Starvation reduced the
phosphorylation rate of ERK1/2 in HCC1954 cells, AKT in SKBR3
cells and RPS6 in both cell lines (Supplementary Figure S1D).
Furthermore, in HCC1954 cells, the phosphorylation status of AKT
increased after serum starvation, which was also observed in a
previous study (Supplementary Figure S1D).37

Targeting of EGFR reduces cell viability in cell line models of EGFR-
high/ERBB2-amplified breast cancer
Viability assays were carried out in both cell lines to assess the
impact of single drugs as well as combinatorial drug treatments.
Trastuzumab and pertuzumab, applied alone or in combination
over a treatment period of 96 h, did not significantly change the
viability of HCC1954 cells, identifying these cells as resistant
towards treatment with anti-ERBB2 antibodies. Erlotinib, added
alone or in combination with other compounds, significantly
reduced the viability of HCC1954 cells (Figure 1a). Incubation of
SKBR3 cells for 96 h with erlotinib and trastuzumab reduced the
fraction of viable cells by 20% and 45%, respectively (Figure 1b).
An even stronger impact on SKBR3 cell viability, a decrease by
60%, was seen when erlotinib and trastuzumab were applied in
combination implying an additive drug effect (Figure 1b). In
contrast, only marginal influence on cellular viability of SKBR3 cells
was seen after exposure to pertuzumab, confirming SKBR3 cells as
pertuzumab-resistant (Figure 1b)38.

Trastuzumab and pertuzumab downregulate AKT but not ERK1/2
signaling in cell line models of EGFR-high/ERBB2-amplified breast
cancer
Next, the impact of drugs on EGF-induced signaling was analyzed
on the phosphoproteomic level. First of all, addition of EGF to
SKBR3 cells induced a fast phosphorylation of ERK1/2 and AKT
with a maximum of activation after 12 min and an elevated state
of AKT phosphorylation persisting for at least 60 min (Figures 2a
and b). Preincubation of SKBR3 cells with trastuzumab significantly
reduced the AKT baseline phosphorylation of time point 0 min
(Po0.05), which was not seen after pretreatment with pertuzu-
mab (Figure 2b). On the other hand, pertuzumab reduced the first
peak of AKT phosphorylation observable 12 min after EGF addition
but not so trastuzumab (Figure 2b). However, notable differences
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Figure 1. Impact of targeted therapeutics on cell viability. Cell viability was assessed after 96 h using the CellTiter-Blue assay. HCC1954 (a) and
SKBR3 (b) cells were cultivated under the standard growth conditions and exposed to single drugs separately (trastuzumab, pertuzumab and
erlotinib), as well as to all possible combinations. Erlotinib alone reduced HCC1954 cell viability, whereas in SKBR3 cells, effects mediated by
trastuzumab and erlotinib were additive. Bar plots represent the means of four replicates. Significant differences are indicated with asterisks
(Po0.01). Supplementary Figure S2 shows the impact of drug on cell viability after 24, 48, 72 and 96 h for both cell lines.
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regarding the impact of both therapeutic antibodies on EGF-
induced AKT signaling disappeared 30–60 min after adding EGF
(Figure 2b). In summary, trastuzumab as well as pertuzumab
revealed a strong inhibitory impact on EGF-induced AKT signaling
in SKBR3 cells (Figures 2b and d) but did not prevent a
concomitant activation of ERK1/2 signaling (Figures 2a and c).

EGF-stimulation of PI3K-mutated HCC1954 cells resulted in
steadily fluctuating levels of phosphorylated AKT, which was
independent of the EGF concentration applied (data not shown),
and persisted also after preincubation with trastuzumab, pertu-
zumab or both therapeutic antibodies (Supplementary Figures
S3B and D). Trastuzumab- and pertuzumab-mediated effects on
EGF-induced ERK1/2 signaling were also minor in HCC1954 cells
(Supplementary Figures S3A and C).

Erlotinib revealed a strong impact on cellular signaling in model
cell lines of EGFR-high/ERBB2-positive breast cancer
Preincubation of SKBR3 cells with erlotinib reduced the EGF-
inducible maximum of phosphorylated ERK1/2 by 60–70%, and a
full downregulation of ERK1/2 activation was observed 20 min
after stimulation with EGF (Figure 2a). In addition, ERK1/2 and AKT
signaling were both reduced after exposure of SKBR3 cells to
erlotinib-containing drug combinations (Figures 2c and d and
Table 1). In HCC1954 cells, erlotinib effectively reduced the
baseline level of ERK1/2 phosphorylation and also the response to
EGF but did not influence the characteristic fluctuation seen for
phosphorylated AKT (Supplementary Figures S3A and B).

Heregulin-beta 1 (HRG)-induced signaling requires participation
of EGFR in SKBR3 cells
To assess how an activation of ERBB3-mediated signals might
influence drug efficacy, SKBR3 cells were stimulated with HRG. The
addition of HRG triggered a two-fold stronger activation of AKT

signaling when compared with adding equimolar amounts of EGF
(Supplementary Figure S4), which is in line with a predominant
formation of ERBB2/ERBB3 heterodimers in response to HRG. None
of the antibody drugs abolished HRG-induced AKT signaling when
added as a single compound (Supplementary Table S2). However,
drug combinations comprising pertuzumab were more effective
than those including trastuzumab. In detail, pretreatment of
SKBR3 cells with pertuzumab and erlotinib strongly reduced the
HRG-induced activation of AKT signaling by 60%, and a
comparable efficiency was also obtained after preincubation with
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Figure 2. Impact of therapeutics on EGF-induced fast signaling. Data show EGF-induced ERK1/2 (a and c) and AKT (b and d) phosphorylation
after preincubation of SKBR3 cells with trastuzumab, pertuzumab or erlotinib (a and b), as well as with all possible combinations (c and d).
Phosphorylation dynamics were analyzed by RPPA. EGF (5 nM) induced phosphorylation of AKT and ERK1/2 in serum-starved SKBR3 cells.
Pertuzumab and trastuzumab downregulated AKT signaling, whereas erlotinib, applied alone and in all combinations with therapeutic
antibodies, inhibited the activation of both the pathways. Corresponding data set for HCC1954 cells is shown as Supplementary Figure S3 and
Supplementary Table S1.

Table 1. Drug impact on EGF-induced fast signaling in SKBR3 cells
(% AU)

0 min 12 min EGF 30 min EGF

pERK pAKT pERK pAKT pERK pAKT

Control 6.6 34.3 87.5 97.2 100.0 98.8
E 0 6.2 30.9 39.5 14.6 35.7
T 10.8 7.2 82.0 68.3 77.8 46.4
P 16.5 25.0 71.3 52.5 66.3 38.2
ET 1.1 2.5 35.0 19.8 2.6 0
EP 0.6 5.1 32.8 31.3 1.9 8.6
TP 26.8 11.2 66.3 42.1 59.7 26.0
TPE 4.6 5.2 42.3 10.6 11.2 6.2

Abbreviations: EGF, epidermal growth factor; E, erlotinib; EP, erlotinibþ
pertuzumab; ET, erlotinibþ trastuzumab; P, pertuzumab; T, trastuzumab; TP,
trastuzumabþpertuzumab; TPE, trastuzumabþpertuzumabþ erlotinib.
Impact of E, T, P and combinatorial drug treatments (ET, EP, TP and TPE)
on fast signaling in SKBR3 cells (Figure 2). The median of normalized
triplicate measurements was used to calculate the impact of drug on
cellular signaling. Scales ranging 0–100% were generated target protein-
specific. Maximal readings of normalized fluorescent intensities of a certain
time course were set to equal 100% and the minimum was set to equal 0%.
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the triple drug combination (Figure 3, Supplementary Table S2).
The two other binary drug combinations, trastuzumab plus
pertuzumab and trastuzumab plus erlotinib, reduced HRG-
induced AKT signaling by 20% and 35%, respectively (Figure 3).
Both antibody drugs did not abolish HRG-induced ERK1/2

signaling when added alone or in combination (Supplementary
Figure S5A), which was only seen after pretreatments including
erlotinib (Supplementary Figure S5B). To sum up, only pertuzumab
and erlotinib, but neither pertuzumab alone nor trastuzumab plus
erlotinib, prevented the activation of AKT signaling in response to
HRG in ERBB3-positive SKBR3 cells.

Phosphorylation states of RPS6 and RB reflect the impact of
targeted therapeutics on ligand-induced signaling
Long-term impact of drug on the signaling pathways reflecting
protein synthesis and cell-cycle progression was assessed by
monitoring the dynamics of RPS6 (S235/S236) and RB (S807/S811)
phosphorylation. Generally, a downregulation of RPS6 phosphor-
ylation was seen after 8–10 h of drug exposure, whereas the
impact of drug on RB phosphorylation became visible after
20–24 h (Figure 4).

Erlotinib alone as well as all erlotinib-containing drug combina-
tions significantly reduced RPS6 and RB phosphorylation levels in
HCC1954 cells (Figures 4a and c). On the contrary, preincubation
of HCC1954 cells with a combination of trastuzumab and
pertuzumab increased the phosphorylation rate of both proteins
by two-fold (Figures 4a and c and Table 2). Additionally, c-MET
phosphorylation increased after cotreatment of HCC1954 cells
with trastuzumab and pertuzumab, indicating that after blocking
ERBB2 signaling via c-MET gains importance (Figure 5). On the
other hand, a combined treatment of SKBR3 cells with trastuzu-
mab and erlotinib resulted in a fast and long-lasting depho-
sphorylation of RB and RPS6 (Figures 4b and d).

Taken together, in HCC1954 cells, erlotinib alone could
efficiently reduce the phosphorylation rates of RB and RPS6. A
benefit resulting from combination treatment was seen in SKBR3
cells after preincubation with trastuzumab and erlotinib. In
summary, treatments reducing the viability of SKBR3 or
HCC1954 cells after 96 h were identical with those that revealed
a strong impact on cellular signaling.
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Figure 3. Impact of therapeutics on HRG-induced AKT signaling.
Data show HRG-induced AKT phosphorylation after preincubation
of SKBR3 cells with trastuzumab, pertuzumab or erlotinib for all
possible combinations. Phosphorylation dynamics was analyzed by
RPPA. HRG (5 nM) induced a phosphorylation of AKT signaling in
serum-starved SKBR3 cells. Drug combinations downregulated HRG-
induced AKT signaling, single drugs were ineffective. Corresponding
data set for pERK1/2 dynamics is shown as Supplementary Figure S5.
HCC1954 cells do not strongly respond to the addition of HRG due
to low level ERBB3 expression (data not shown).
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Figure 4. Long-term effects of targeted therapeutics on RPS6 and RB phosphorylation. Cells were exposed to erlotinib, pertuzumab/
trastuzumab, trastuzumab/erlotinib or pertuzumab/erlotinib under standard growth conditions. Changes of protein phosphorylation were
monitored over a time period of 30 h and analyzed by RPPA. Data show RPS6 (a and b) and RB (c and d) phosphoprotein dynamics in HCC1954
cells (a and c) and SKBR3 cells (b and d). Erlotinib and erlotinib-containing combinations downregulated RPS6 and RB phosphorylation of
HCC1954 and SKBR3 cells.
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Immunohistochemical characterization of ERBB2-positive breast
cancer specimens
To evaluate the clinical relevance of data obtained in cell line
models of EGFR-high/ERBB2-amplified breast cancer, an immuno-
histochemical characterization was carried out for breast cancer
specimens identified as HER2-amplified tumors in the clinic
routine. In detail, the abundance of ERBB2, EGFR, estrogen and
progesterone receptor was determined in 48 clinical specimens.
Immunohistochemical data indicated that approximately one-
third15 of ERBB2-positive breast tumors coexpressed EGFR
(Table 3). None of these tumors showed any detectable
hormone-receptor expression, which was seen in another third
of ERBB2-positive breast tumors14 (Figures 6a and b and Table 3).
A total of 19 tumors were positive for ERBB2 but for none of the
other receptors (Figure 6c and Table 3). Moreover, the analysis of
clinical data revealed that an increased number of patients with
ERBB2-positive tumors that coexpress EGFR suffers from lymph

node metastasis (12/15) in comparison with patients whose
tumors expressed ERBB2 only (6/19) or patients with triple-positive
tumors (7/14) (Table 3).

DISCUSSION
Signal propagation through ERBB receptors depends on receptor
homo- or heterodimerization, which occurs mostly in response to
ligand binding. ERBB2 presents the preferred binding partner as it
does not require ligand activation for dimerization. Tumors
express different subsets and levels of receptors and ligands,
and for this reason, ERBB-mediated signaling depends on the
protein repertoire of a particular tumor.33,34 The rationale of
current state-of-the-art treatment concepts employing both
therapeutic antibodies is based on the strong impact that
pertuzumab has on ligand-dependent signaling and the
inhibition of ligand-independent ERBB2-mediated signaling by
trastuzumab.17 Clinical data indeed revealed a benefit rate of 50%
by combination treatment for patients whose ERBB2-positive
breast cancer had progressed under trastuzumab treatment.16,39,40

However, still not all patients respond to the binary anti-ERBB2
treatment consisting of two different anti-ERBB2 antibodies. Thus,
biomarker candidates need to be identified that are suitable for
patient stratification ahead of treatment decisions.

In principle, high-level expression of two prominent proto-
oncogenic growth-factor receptors might independently drive
tumor progression, thus challenging treatment concepts that
focus exclusively on the inhibition of ERBB2. Therefore, this study
addressed the question, whether targeting ERBB2 is also sufficient
to block tumor growth in EGFR-high/ERBB2-amplified breast
cancer. Along these lines, the potential benefit of applying the
EGFR-targeting small-molecule erlotinib in combination with
trastuzumab or pertuzumab was assessed in vitro to obtain
evidence for the design of future clinical trials targeting
specifically EGFR in ERBB2-positive breast cancer. Substantial
evidence for the existence of a separate ERBB2-amplified breast
cancer subtype with high-level expression of activated EGFR has
been demonstrated24 and was evaluated in this study by
analyzing data of an independent set of ERBB2-positive breast
cancer patients. Furthermore, our data confirmed that the
percentage of lymph-node-positive tumors is higher for ERBB2-
positive breast cancer with high-level EGFR expression compared
with tumors expressing ERBB2 only or triple-positive breast cancer.

Table 2. Impact of erlotinib (E) and combinatorial treatments (ET, EP,
TP, TPE) on long-term signaling in SKBR3 cells and HCC1954 cells
(Figure 4)

Cell line SKBR3 HCC1954

pRPS6 pRB pRPS6 pRB

Hours 12 24 12 24 12 24 12 24
Control 64.6 28.6 87.0 93.7 43.8 12.6 59.9 42.2
E 19.5 13.0 46.9 46.6 12.4 0.7 36.4 10.6
ET 3.1 0 50.4 14.3 8.5 0.4 37.3 8.6
EP 53.4 10.4 70.0 26.8 14.1 0 37.1 4.4
TP 59.0 5.7 78.2 77.7 96.5 20.5 100.0 65.3
TPE 12.5 0.1 74.7 57.6 21.2 3.9 51.2 18.2

Abbreviations: E, erlotinib; EP, erlotinibþpertuzumab; ET, erlotinibþ
trastuzumab; P, pertuzumab; T, trastuzumab; TP, trastuzumabþ
pertuzumab; TPE, trastuzumabþpertuzumabþ erlotinib. Scales ranging
0–100% were generated target protein-specific. Maximal readings of
normalized fluorescent intensities of a certain time course were set to
equal 100% and the minimum was set to equal 0%.
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Figure 5. Long-term effects of targeted therapeutics on c-MET
phosphorylation. Cells were exposed to drugs under the standard
growth conditions. Changes of protein phosphorylation were
monitored over a time period of 30 h and analyzed by RPPA. Data
show c-MET phosphoprotein dynamics in HCC1954 cells. Cotreat-
ment with trastuzumab and pertuzumab causes an increase of
c-MET phosphorylation on Y1234/1235.

Table 3. Expression of EGFR, ERBB2, estrogen and progesterone
receptors in human breast cancers identified as ERBB2-positive by
immunohistochemistry

Breast cancer subtypes

EGFR/ERBB2 ERBB2 Triple pos.

Total number 15 19 14
Relative number 31% 40% 29%
Age (years) 61.0 58.0 66.0

Number of lymph node metastasis
0 3 13 7
1 8 4 6
2 3 0 0
3 1 2 1

Lymph node metastasis
negative tumors

3 13 7

Lymph node metastasis
positive tumors

12 6 7

Patients with breast cancers of the EGFR-high/ERBB2-positive subtype
suffer more frequently of lymph node metastatis (P¼ 0.0129).
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Data obtained in this study showed on a mechanistic level that a
combination of EGFR and ERBB2-targeting drugs produces a
strong downregulation of signaling in EGFR-high/ERBB2-positive
breast cancer cell lines.

The present data confirm that the EGF-induced activation of
AKT signaling via EGFR/ERBB2 heterodimers is indeed amenable to
inhibition by pertuzumab and trastuzumab combination treat-
ment. Trastuzumab inhibits AKT-mediated signaling due to an
abrogation of ligand-independent signaling, whereas pertuzumab
prevents ligand-induced signaling, which is well in line with other
reports.14,15 However, ERK1/2 signaling was not affected as signal
propagation via the ERK1/2 pathway can obviously be initiated by
EGFR homodimers in an ERBB2-independent manner. This finding
is in line with a previous report that demonstrated a shift of the
ERBB-receptor dimer equilibrium towards increased numbers of
EGFR homodimers after targeted inhibition of ERBB2.41 The fact
that erlotinib in combination with trastuzumab or pertuzumab can
completely abolish EGF-induced signaling in SKBR3 cells suggests
that both receptors need to be fully inhibited to avoid activation
of an EGFR-based bypass mechanism.

Major differences regarding the mode of action of the two
therapeutic antibodies became evident when signaling in SKBR3
cells was triggered with HRG instead of EGF. HRG has been
reported to induce the formation of HRG:ERBB3/ERBB2 receptor
complexes, thus strongly activating AKT signaling.33,34 Data
obtained in SKBR3 cells demonstrate that pertuzumab alone was

not sufficient to block HRG-activated AKT signaling. However,
HRG-induced activation of AKT signaling was fully inhibited when
pertuzumab was applied in combination with erlotinib, whereas a
combination of trastuzumab and erlotinib was less efficient. This
indicates that EGFR/ERBB3 dimers contribute to a sustained
activation of AKT signaling in response to HRG. The finding that
EGFR needs to be coinhibited in addition to ERBB2/3 to prevent
HRG-induced signaling points to a central role of EGFR for the
propagation of HRG-induced signals in SKBR3 cells. Furthermore, a
strong downregulation of RPS6 phosphorylation was seen after
cotreatment of SKBR3 cells with trastuzumab and erlotinib,
confirming data on a combinatorial use comprising the dual
kinase inhibitor lapatinib and trastuzumab in ERBB2-amplified
gastric cancer cells.42

The impact of trastuzumab and pertuzumab on downstream
signaling was highly different in HCC1954 cells harboring the
H1047R PI3K gain-of-function mutation. First of all, AKT phosphor-
ylation dynamics observed in this cell line did not depend on
ligand binding and was also not influenced by anti-ERBB2 drugs.
Furthermore, combinatorial treatment of HCC1954 cells with
trastuzumab and pertuzumab increased RPS6 and RB phosphor-
ylation levels and activated c-MET, which can independently
contribute to downstream signaling. Expression of c-MET,
detected only in HCC1954 but not SKBR3 cells, has previously
been associated with trastuzumab resistance.43 Data obtained in
this study indicated also that exposure of HCC1954 cells to

ERBB2 EGFR

Figure 6. Selected clinical specimens illustrate ERBB2-amplified breast cancer as a heterogenous disease. Immunohistochemical detection of
ERBB2 (left column) and EGFR (right column), magnification � 200. EGFR-high/ERBB2-positive breast cancer (a and b) and ERBB2-amplified
breast cancer without positive staining of EGFR (c).
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erlotinib resulted in a significant decrease of RPS6 and RB
phosphorylation. Erlotinib, applied alone and in combination with
other therapeutic antibodies, also revealed a rather strong impact
on cell viability contrasting the concept of ‘oncogene addiction’.
This observation implies that oncogenic aberrations accumulated
at later stages during tumor development can potentially overrun
the function of early driver mutations so that early genomic
aberrations may be carried on as passenger mutations. Drug
resistance of SKBR3 cells strongly depends on the particular type
of ligand, which reflects the fact that this cell line can use other
receptors, for example, EGFR or ERBB3, to bypass a block of ERBB2.
Cellular signaling circuits are decoupled from receptor-mediated
signaling in PI3K-mutated HCC1954 cells, and inhibition of
HCC1954 cells with anti-ERBB2 antibodies did therefore not
present an efficient strategy. A retrospective analysis of a cohort
of trastuzumab-treated breast cancer patients revealed that
disease progress was faster in patients with ERBB2-positive
tumors and mutated PI3K.44

Different molecular mechanisms might produce a certain ‘drug-
resistant’ phenotype. Thus, unraveling drug-resistance mechan-
isms on a molecular level will result in a level of understanding
that allows drafting of new treatment concepts for further clinical
validation. The data presented here suggest that EGFR activation
and thereby the activation of downstream signaling cascades can
only be prevented by combined inhibition of ERBB2 and EGFR in
ERBB2-positive breast cancer with high-level expression of EGFR.
On the other hand, ERBB2-amplified and PI3K-mutated tumors will
potentially present a phenotype resistant towards anti-ERBB2
drugs. In conclusion, it might be worthwhile to assess EGFR
expression levels as well as the mutational status of PI3K in breast
cancer specimens to improve treatment concepts for ERBB2-
positive breast cancer.

MATERIALS AND METHODS
Cell culture
SKBR3 (HTB-30) cells were obtained from the ATCC (LGC Standards, Wesel,
Germany) and cultivated in Dulbecco’s Modified Eagles Medium supple-
mented with 10% fetal bovine serum and 1� NEAA (GIBCO, Darmstadt,
Germany). The cells were split two times per week. For stimulation
experiments, 4� 105 cells were seeded in six-well plates, cultivated for 24 h
and serum-starved for additional 24 h. The human breast cancer cell line
HCC1954 (CRL-2338) was cultivated as recommended by ATCC. The cells
were split three times per week. For stimulation experiments, 2� 105 cells
were seeded in six-well plates and cultivated as described before. Each cell
line was confirmed as authentic by cytogenetic analysis carried out at the
DSMZ (www.dsmz.de).

Viability assay
Cells were seeded (HCC1954: 2500 cells per well; SKBR3: 5000 cells per
well) in full growth medium in black F96 MicroWell plates (Nunc,
Langenselbold, Germany) to result in four replicate measurements. After
24 h, targeted therapeutics trastuzumab (10 ng/ml), pertuzumab (10 ng/ml)
and erlotinib (1 mM) (Roche Diagnostics GmbH, Penzberg, Germany) were
added alone or in combination and incubated for further 24, 48, 72 or 96 h.
CellTiter-Blue reagent (Promega, Mannheim, Germany) was added accord-
ing to the manufacturer’s protocol and incubated for 3 h at 37 1C before
measuring fluorescence using a Tecan Infinite 200 (Tecan, Crailsheim,
Germany). To determine significant differences, student’s t-tests were
conducted and P-values were Bonferroni-corrected for multiple testing.

Dynamic measurements
In short-term experiments, trastuzumab (10 ng/ml), pertuzumab (10 ng/ml)
and erlotinib (1mM) (Roche Diagnostics GmbH, Penzberg, Germany) were
added to cells in starvation medium either alone or in combinations 1 h
prior to growth-factor stimulation. Cells were stimulated with 5 nM EGF
(Sigma, Munich, Germany) or HRG (Labvision, Dreieich, Germany). Lysates
were prepared after 0, 4, 8, 12, 16, 20, 30, 40, 50 and 60 min. Each
experiment involving inhibition with targeted drugs was performed in
three biological replicates, whereas measurements without inhibitors were

performed in five replicates. Short-term measurements were generated
using an automated liquid handling system (Biomek FX; Beckman Coulter,
Krefeld, Germany). Long-term signaling experiments were carried out in
full growth medium to avoid confounding effects that are potentially
caused by nutrient deficiency. Cells were incubated in the standard
medium for 24 h before addition of trastuzumab, pertuzumab and erlotinib
in the same concentrations as above. Therapeutics were applied either
alone (erlotinib) or in combination and cells were lysed after 0, 6, 12, 18, 24
and 30 h. Long-term measurements were carried out manually.

Cell lysis and sample preparation
Medium was replaced by ice-cold phosphate-buffered saline, plates were
transferred on ice and cells were harvested manually by scraping in M-PER
lysis buffer (Pierce, Bonn, Germany) containing protease inhibitor
Complete Mini and phosphatase inhibitor PhosSTOP (Roche, Mannheim,
Germany). Cells were lyzed for 20 min on an end-over-end shaker and
lysates were cleared at by centrifugation at 16 000 g.

Antibody characterization
Antibodies were analyzed for specificity by western blot analysis, and only
highly specific antibodies were used for RPPA analysis. Dilution series of
protein lysates were included in each printing run to confirm a linear
correlation between protein concentration and antibody signal. Protein
lysates were prepared from HCC1954 and SKBR3 cells cultured in the
standard medium or stimulated with EGF or HRG for 12 min after
starvation. The following antibodies were used for western blot and RPPA
analysis: AKT (sc-1619-R; Santa Cruz Biotechnology, Santa Cruz, CA, USA),
ERK1/2 (06-182; Millipore, Billerica, MA, USA), pAKT (S475. 9271), pERK1/2
(T202/Y204, 4370), EGFR (2646), RPS6 (2217), pRPS6 (S235/236, 4858), pRB
(S807/811, 9308), c-MET (3148) and pc-MET (Y1234/1235, 3129) (Cell
Signaling Technologies, Beverly, MA, USA), ERBB2 (Ab-17) and ERBB3 (Ab-2)
were from Neomarkers (Fremont, CA, USA).

Western blot analysis
Western blot analysis was carried out by loading 20 mg total protein lysate
per well in SDS–PAGE. The polyvinylidene difluoride membrane was
blocked in 50% blocking buffer for near-infrared fluorescent western
blotting (Rockland, Gilbertsville, PA, USA) in Tris-buffered saline containing
5 mM sodium fluoride and 1 mM sodium vanadate. Primary antibodies were
diluted 1:1000 in blocking buffer and incubated overnight. Secondary
Alexa 680-labeled antibodies (Molecular Probes, Darmstadt, Germany)
were diluted 1:10 000 in Tris-buffered saline Tween-20. Blots were scanned
on the Odyssey Infrared Imaging System (LI-COR, Lincoln, NE, USA).

Quantitative reverse transcription PCR
Quantitative reverse transcription PCR was performed using Taqman Gene
Expression Assays (Applied Biosystems, Darmstadt, Germany) for EGFR
(Hs00193306_m1), ERBB2 (Hs00170433_m1), ERBB3 (Hs00176538_m1),
ERBB4 (Hs00171783_m1), c-MET (Hs00179845_m1) and GAPDH
(Hs99999905_m1). RNA was isolated using the RNeasy Kit according to
the manufacturer’s protocol (Qiagen, Hilden, Germany). First strand
synthesis of cDNA was carried out using the ReverdAid H-Minus First
Strand cDNA Synthesis Kit (Fermentas, St. Leon-Rot, Germany). The
quantitative reverse transcription PCR reaction was executed using a
7900HT Fast Real-Time PCR System. The assay was preheated for 2 min at
50 1C and 15 min at 95 1C. The reaction cycle of 15 s/95 1C and 1 min/60 1C
was repeated 40 times. PCR reactions were performed in triplicate.
Samples were normalized for GAPDH expression and adjusted to receptor
expression levels of MCF7 cells using the R-package ‘ddCT’.45

Processing of RPPAs
Total protein concentration was determined using the bicinchoninic acid
(BCA) method (Pierce). Lysates were adjusted to a total protein
concentration between 1.2 and 3 mg/ml. Prior to printing, samples were
mixed with Tween-20 to result in a final concentration of 0.05%. The
samples were printed in triplicate onto nitrocellulose-coated glass slides
(Oncyte; Grace-Biolabs, Bend, OR, USA) using a contact spotter (2470
Arrayer; Aushon Biosystems, Billerica, MA, USA) equipped with 180mM pins.
Slides were blocked in 50% Odyssey blocking buffer (LI-COR) in phosphate-
buffered saline containing 5 mM sodium fluoride and 1 mM sodium
vanadate. Primary antibodies were diluted 1:300 in antibody diluent with
background reducing components (Dako, Glostrup, Denmark). Alexa 680-
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labeled secondary antibodies (Molecular Probes) were diluted 1:8000.
After drying, slides were scanned on the Odyssey Infrared Imaging System
(LI-COR). A single slide was used for total protein quantification per
spotting run after staining with Fast Green FCF staining buffer (Sigma,
Steinheim, Germany) as described before.35

RPPA data analysis
Signal intensities were determined using the GenePix Pro5.0 software
(Molecular Devices, Sunnyvale, CA, USA) resulting in gpr files. Data analysis
was carried out using the statistical software environment R.46 For further
analysis, raw data was normalized by calculating spot-specific correction
factors based on signal intensities of the FCF slide and correcting the
readout of slides probed with antibodies.35 The median of biological and
technical replicates was calculated for a certain treatment and for each
time point. This data set was used to calculate smoothing splines for each
phosphoprotein. Spline calculation started with a constant model fit, and
degrees of freedom were increased stepwise resulting in more complex
model fits. All model fits representing increasing degrees of freedom were
compared with the constant model fit using analysis of variance at a
significance level of 5%. The model fit with the smallest P-value was
chosen for the graphic presentation of dynamic data. Error bars were
calculated as point wise s.e. of the spline fit representing the noise of
biological replicates. To compare two experimental conditions, for
example, no drug treatment vs erlotinib treatment, Welch two-sample
t-tests were conducted to test whether the mean of biological replicates
differed significantly between treatments. This analysis was performed in
cell line- and target protein-specific manner. To describe treatment effects
quantitatively, a minimum-maximum normalization was applied to define
a scale ranging between 0 and 1 based on median signal intensities.47

The maximum reading of 1 was considered to correspond to 100% of
phosphorylation observed for a certain series of experiments. Microarray
data are available via the GEO accession number GSE36327.48,49

Tumor samples and immunohistochemistry
Tissue microarrays containing a total of 50 ERBB2-overexpressing primary
breast carcinomas were collected from the Institute of Pathology of
Heidelberg University Clinics and Tissue Bank of the National Center for
Tumor Diseases. ERBB2 status had previously been assessed immunohis-
tochemically using a polyclonal antiserum (1:500, A0485; DakoCytomation,
Hamburg, Germany). In three cases with equivocal (score 2þ ) staining
results, HER2 positivity had been verified by fluorescence in situ
hybridization. EGFR immunostaining was carried out with a mouse anti-
human monoclonal antibody (31G5; Zytomed, Berlin, Germany) at a
dilution of 1:25 following Pronase E pretreatment (0.1% w/v in phosphate-
buffered saline, 6 min at 37 1C). Visualization was performed using the
Chemmate peroxidase/AEC-Kit (avidin–biotin–complex method; DakoCy-
tomation) according to the manufacturer’s instructions.
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