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ABSTRACT
Motivation: β-turn is an important element of protein
structure. In the past three decades, numerous β-turn
prediction methods have been developed based on
various strategies. For a detailed discussion about the
importance of β-turns and a systematic introduction of
the existing prediction algorithms for β-turns and their
types, please see a recent review (Chou, Analytical
Biochemistry, 286, 1–16, 2000). However at present, it
is still difficult to say which method is better than the
other. This is because of the fact that these methods were
developed on different sets of data. Thus, it is important to
evaluate the performance of β-turn prediction methods.
Results: We have evaluated the performance of six
methods of β-turn prediction. All the methods have been
tested on a set of 426 non-homologous protein chains.
It has been observed that the performance of the neural
network based method, BTPRED, is significantly better
than the statistical methods. One of the reasons for
its better performance is that it utilizes the predicted
secondary structure information. We have also trained,
tested and evaluated the performance of all methods
except BTPRED and GORBTURN, on new data set using
a 7-fold cross-validation technique. There is a significant
improvement in performance of all the methods when
secondary structure information is incorporated. Moreover,
after incorporating secondary structure information, the
Sequence Coupled Model has yielded better results in
predicting β-turns as compared with other methods. In this
study, both threshold dependent and independent (ROC)
measures have been used for evaluation.
Contact: raghava@imtech.res.in
Supplementary information: http://imtech.res.in/
raghava/betatpred/eval/.

INTRODUCTION
Protein secondary structure prediction is an intermediate
step in the prediction of tertiary structure from amino
acid sequence. Numerous methods have been developed
in the past for the secondary structure prediction (http:
//PredictionCenter.llnl.gov/casp4/). Except for a few of
the earlier methods, all the secondary structure prediction

∗To whom correspondence should be addressed.

methods predict only three states in a protein—helices, β-
strand and coil. The coil region in a protein includes tight
turns (Chou, 2000), bulges and random coil structures.
One of the tight turns is a β-turn, which plays a vital
role in protein folding and stability (Takano et al., 2000).
The present secondary structure prediction methods do
not provide any information about β-turns in proteins;
despite the fact that β-turns is the most common type of
non-repetitive structure. On average, the β-turns constitute
about 25% of the residues in the globular proteins (Kabsch
and Sander, 1983). In contrast to a vast number of methods
for secondary structure prediction, only a few methods
have been reported for β-turn prediction (Chou and
Fasman, 1979; Chou, 1997; Shepherd et al., 1999). Most
of the β-turn prediction methods are statistical except
BTPRED, which is based on a neural network. Recently,
we have developed a web server for predicting β-turns in
a protein using existing statistical algorithms (Kaur and
Raghava, 2002; http://imtech.res.in/raghava/betatpred/).

Although, there are a number of worldwide experiments
to assess the performance of protein structure prediction
methods (e.g. CASP, CAFASP and EVA), however, there
is no report on evaluation of β-turn prediction methods.
Thus, there is a need to assess the quality of these methods.
The developers have reported accuracy on different data
sets that make it difficult to have an objective comparison
of methods. In this paper, an attempt has been made to
evaluate the performance of different β-turn prediction
methods on a uniform data set.

MATERIALS AND METHODS
Data set
Our data set consists of 426 non-homologous protein
chains, as described by Guruprasad and Rajkumar (2000).
In this data set, no two protein chains have more than 25%
sequence identity. The structure of these protein chains is
determined by X-ray crystallography at 2.0 Å resolution
or better. The PROMOTIF program was used to assign the
β-turns in proteins (Hutchinson and Thornton, 1996).

Cross validation technique
In order to evaluate a prediction method, it is necessary
to have different data sets for training and testing. The
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jackknife test is the most objective and rigorous cross
validation method compared with the independent data set
test and sub-data set test (Chou and Zhang, 1995). In a full
jack-knife test of N proteins, one protein is removed from
the set, the training is done on the remaining N−1 proteins
and the testing is done on the removed protein. This
process is repeated N times by removing each protein in
turn. Since this training technique is very time consuming,
particularly for methods that take a long time in training
(e.g. neural networks), a more limited cross-validation or
sub-data set test is often performed. In sub-data set test, the
set of proteins is divided into M equally balanced subsets.
Parameters are developed on (M − 1)N/M proteins and
then tested on the remaining N/M proteins. This process
is repeated M times, once for each subset. In this report, a
7-fold cross-validation technique is used where the data is
divided into 7 subsets.

Inclusion of secondary structure information in
prediction
BTPRED (Shepherd et al., 1999) is a neural network based
method that incorporates secondary structure information.
In order to have an objective comparison between BT-
PRED and other statistical approaches, the performance
of different statistical methods has also been assessed by
including secondary structure information. In the first step,
the secondary structures of all the 426 proteins have been
predicted by the PROF method (Quali and King, 2000).
In the second step, the turns are predicted only for those
residues that are in the predicted coil region, i.e. elimi-
nating the helix- and strand-forming residues from β-turn
prediction.

Measures of prediction accuracy
The measure used in this study can be divided in following
two categories.

Threshold dependent measures Four parameters were
used to measure the performance of prediction methods
as described by Shepherd et al. (1999). Following is
the brief description of these parameters: (i) Qtotal (or
prediction accuracy), is the percentage of correctly clas-
sified residues; (ii) Matthews Correlation Coefficient
(MCC), accounts for both over- and under-predictions;
(iii) Qpredict is the percentage of correct prediction
of β-turns (or probability of correct prediction); and
(iv) Qobserved is the percentage of observed β-turns
that are correctly predicted (or percent coverage). These
parameters can be calculated by following equations:

Qtotal =
(

p + n

t

)
× 100

MCC = pn − ou√
(p + o)(p + u)(n + o)(n + u)

Qpredicted =
(

p

p + o

)
× 100

Qobserved =
(

p

p + u

)
× 100

where p and n are number of correctly classified β-turn
and non-β-turn residues, respectively. where o and u are
number of incorrectly classified β-turn and non-β-turn
residues, respectively.

Threshold independent measures—ROC One problem
with the threshold dependent measures is that they
measure the performance on a given threshold. They
fail to use all the information provided by a method
for evaluation. The Receiver Operating Characteristic
(ROC) is a threshold independent measure that has been
developed as a signal processing technique (Deleo, 1993).
The area under the ROC curve measures discrimination,
the ability of a method to correctly classify β-turns and
non-turn residues.

Prediction methods analyzed
Six different β-turn prediction methods have been evalu-
ated. Each is briefly described here.

Chou–Fasman algorithm The Chou–Fasman algorithm
depends on assigning a set of prediction values to each of
the residues and determining the conformational param-
eters and the positional frequencies (Chou and Fasman,
1974). The conformational parameters for each amino
acid are calculated by considering the relative frequency
of a given type of secondary structure, and the fraction of
residues occurring in that type of structure.

Thornton’s algorithm Wilmot and Thornton (1988) has
developed a prediction program by using a data set of 59
proteins based on the statistical method as employed by
Chou and Fasman (1974). Initially the absolute amino acid
occurrence for each of the four positions in the β-turn
types I and II are calculated. These are then normalized
to give positional frequencies f (i), f (i +1), f (i +2) and
f (i + 3). Conformational parameters for turn categories,
Pt , are calculated for each amino acid. The conformational
parameters for helix, Pa and β-sheet, Pb are taken from
(Chou and Fasman, 1979).

1–4 & 2–3 Correlation model In this model, the cou-
pling effect between the 1st and 4th residue and that be-
tween the 2nd and 3rd is given a special consideration.
When a tetrapeptide folds into a β-turn, the interaction be-
tween its 1st and 4th residue and between its 2nd and 3rd
residue play an important role. Particularly, a hydrogen
bond may be formed between the backbone C = O of the
1st residue and the backbone NH of the 4th residue. This
model is based on the first-order Markov chain involv-
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Table 1. Results of β-turn prediction methods at original and new thresholds using original parameters

Methods Qtotal Qpredicted Qobserved MCC
Original New Original New Original New Original New

BTPRED 74.4 – 48.3 – 57.3 – 0.35 –
Chou–Fasman 65.2 72.4 37.6 43.6 63.5 43.6 0.26 0.25
Thornton 68.0 71.5 38.6 41.3 52.4 39.2 0.23 0.22
1–4 & 2–3 Correlation model 59.1 69.8 32.4 37.9 61.9 36.4 0.17 0.17
Sequence coupled model 53.3 69.2 32.4 36.9 72.8 35.8 0.17 0.16
GORBTURN 70.5 – 39.3 – 37.3 – 0.19 –

ing conditional probabilities P3(X3|X2) and P4(X4|X1).
On the basis of these probabilities, an attribute function φ

is calculated and a β-turn is predicted if the discriminant
function � is positive where, � = φ − λ and λ is the
threshold value determined by an optimization procedure
(Zhang and Chou, 1997).

Sequence coupled model Chou (1997) proposed a
residue coupled model based on first order Markov chain
to predict β-turns in proteins. Given a tetrapeptide, its
attribute to the β-turn set S+ or the non-β-turn set S− is
expressed, respectively by an attribute function ( which
can be defined as


+(Ri Ri+1 Ri+2 Ri+3) = g P+
i (Ri )P+

i+1(Ri+1|Ri )

×P+
i+2(Ri+2|Ri+1)P+

i+3(Ri+3|Ri+2)

where g = 104 is the amplifying factor used for making
the data in a range easier to handle. P+

i (Ri ) is the
probability of amino acid Ri occurring at sub site i
in the β-turn tetrapeptide set S+, and it is independent
of the other subsites because Ri is located at the first
position of the four subsite sequence. P+

i+1(Ri+1|Ri ) is
the probability of amino acid Ri+1 occurring at the subsite
i + 1 given that Ri has occurred at position i and so forth.
Similarly, for the non-β-turn set, the attribute function 


can be defined.
Later, the conditional probabilities have been calculated

for different types of β-turns to enable the residue-coupled
model to predict different β-turn types as well (Chou and
Blinn, 1997).

GORBTURN (v3.0) The program GORBTURN (v 3.0),
a new version of BTURNPRED (Wilmot and Thornton,
1990) is a user-friendly piece of software written in
Fortran77. The program uses Thornton’s type I and type
II positional frequencies and the directional parameters
in combination with equivalent parameters (Gibrat et al.,
1987) to eliminate potential helix- and strand-forming
residues from the β-turn prediction.

BTPRED This is a neural network-based method
(Shepherd et al., 1999) developed on a set of 300 non-

homologous protein domains with resolution 2.0 Å or
better. A filtering network is used to improve the accuracy
and the individual turn type is predicted using a separate
neural network for each turn type to be predicted. It uses
secondary structure information obtained from PHDsec
program (Rost and Sander, 1993) about each amino acid.

RESULTS
Evaluation of methods using original/default
parameters
Default threshold We have predicted the β-turns in all
the proteins in our data set using different methods. The
parameters and thresholds have been used as described
by their authors. As shown in Table 1, BTPRED is
significantly better than any other method. The overall
prediction accuracy of BTPRED is 4–21% higher than
the other methods. Taking the Matthew’s correlation
coefficient as one of the performance metric, BTPRED
has an MCC value of 0.35 compared with the 0.26
achieved by Chou–Fasman, 0.23 achieved by Thornton,
0.17 of 1–4 & 2–3 correlation model and sequence
coupled model and 0.19 of GORBTURN. Out of all
the statistical methods, GORBTURN has the highest
prediction accuracy. However, its MCC value is less
than Chou–Fasman and Thornton’s algorithms. Moreover,
Chou–Fasman and Thornton’s algorithms perform better
than the correlation models.

New threshold Except BTPRED and GORBTURN,
the performance of all other methods is threshold de-
pendent. Thus, we have determined the new threshold
value for each method at which Qbserved and Qpredict
are nearly same. At this new threshold, evaluation has
been performed (see Table 1). As shown in Table 1,
there is an improvement in prediction accuracy of all
the methods at new threshold values. The performance
measure of different methods follows the same trend as
the original threshold. Chou–Fasman method performs
better than all other statistical methods. Chou–Fasman
and Thornton’s algorithm have higher prediction accuracy
and MCC values as compared to correlation models. At
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Fig. 1. ROC plot without cross-validation.

Table 2. Results of 7-fold cross-validation at original and new threshold values

Methods Qtotal Qpredicted Qobserved MCC
Original New Original New Original New Original New

Chou–Fasman 74.9 69.3 46.1 36.9 16.9 35.3 0.16 0.16
Thornton 74.5 70.1 44.0 36.7 16.7 30.5 0.15 0.14
1–4 & 2–3 Correlation model 63.2 71.1 35.3 40.8 60.4 40.3 0.21 0.21
Sequence coupled model 50.6 72.7 31.7 43.9 88.4 41.0 0.23 0.25

new threshold values, the sequence coupled model and
1–4 & 2–3 correlation model show quite similar results
although the percentage coverage (Qobserved) of the
former is better. The prediction abilities of these methods
appear to be of the same level.

Threshold independent It can be seen from Table 1 that
some methods have higher Qtotal and lower MCC value
or vice-versa. It is obviously not possible to compare
the methods objectively. Therefore, a single threshold
independent measure of performance, ROC, has been used
to assess the performance of the methods. In order to
have an entire range of ROC plot from 0 to 1, helix and
sheet’s conformational parameters have been lowered in
the case of Chou–Fasman and Thornton’s algorithms. It
is clear from the ROC plot (Figure 1) and ROC values
(see Supplementary information) that the Chou–Fasman
algorithm performs better than all other methods. Its
ROC value, which is indicative of better performance
as compared to other methods, is in agreement with the
higher prediction accuracy and MCC value as achieved
by the Chou–Fasman method (Table 1). Both 1–4 & 2–

3 Correlation models and Sequence Coupled models have
ROC value equal to 0.64 and perform equally.

Testing, training and evaluation using 7-fold cross
validation
We have trained, tested and evaluated the performance
of methods on a new set of proteins using 7-fold cross-
validation for all the methods except BTPRED and
GORBTURN. The results for each algorithm that rep-
resent the average of 7 runs (with each run performed
on a different training/test set pair) at original and new
threshold values are presented in Table 2.

Original threshold After cross-validation, the Chou–
Fasman algorithm performs slightly better than Thornton’s
algorithm. For Chou–Fasman and Thornton’s methods,
there is an approximately 10% increase in overall accuracy
(Qtotal) and probability of correct prediction (Qpredicted)
but there is a significant decrease in the percentage
coverage of turns (Qobserved) and MCC value after cross
validation (Table 2). However, for site-coupled models
(1–4 & 2–3 correlation model and sequence coupled
model), there is a 4–5% improvement in MCC value.
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Fig. 2. ROC plot with cross-validation.

Table 3. Effect of secondary structure information on performance of β-turn prediction methods

Methods Qtotal Qpredicted Qobserved MCC
Original New Original New Original New Original New

BTPRED 75.3 – 49.7 – 63.4 – 0.39 –
Chou–Fasman 74.3 75.3 47.7 49.6 54.3 47.5 0.34 0.32
Thornton 75.2 75.2 49.3 49.3 44.9 44.9 0.31 0.31
1–4 & 2–3 Correlation model 73.4 74.8 46.2 48.0 51.5 39.8 0.31 0.28
Sequence coupled model 72.2 75.4 45.0 49.6 60.0 40.0 0.33 0.28
GORBTURN 75.4 – 49.6 – 37.7 – 0.28 –

The MCC value averaged over 7 testing sets is maximum
for the sequence coupled model and shows a substantial
improvement as compared to other methods.

New threshold Prediction at new threshold values does
not improve the results for Chou–Fasman and Thornton’s
method; however, there is a significant improvement in
overall prediction accuracy and MCC value in case of
correlation models (Table 2).

ROC It is clear from the ROC values (see Supplementary
information) and ROC plot (Figure 2) that sequence
coupled model has the highest ROC value and performs
better than other statistical methods after cross-validation.
1–4 & 2–3 correlation model yields better results than
Chou–Fasman and Thornton’s algorithms.

Effect of secondary structure on performance of
β-turn prediction
An increase in prediction accuracy of statistical methods
can be expected by including secondary structure infor-

mation. The results are summarized in Table 3. The first
conclusion that can be drawn from the results obtained is
that at both original and new thresholds, there is a signifi-
cant improvement in prediction performance by inclusion
of secondary structure information for all the methods. Af-
ter incorporating secondary structure information, site- in-
dependent algorithms show a 5–9% increase in percentage
accuracy whereas correlation models show a significant
improvement of 14–19% in percentage accuracy. MCC
values so obtained are in the range 0.28–0.39, the least be-
ing of GORBTURN and the maximum of BTPRED. Simi-
larly, the probability of correct prediction (Qpredicted) has
improved significantly.

Effect of accuracy of secondary structure
prediction on BTPRED
Table 4 shows the performance of BTPRED by incorpo-
rating the secondary structure information predicted from
different methods. It is evident that the accuracy of BT-
PRED is dependent on the accuracy of secondary struc-
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Table 4. BTPRED results using secondary structure information from
different methods

Methods Qtotal Qpredicted Qobserved MCC

PSIPRED (single) 74.2 47.5 46.4 0.30
PSIPRED (multiple) 76.0 50.9 63.0 0.40
PROF 75.3 49.7 63.4 0.39
PHD 74.4 48.3 57.3 0.35

ture prediction. The secondary structure prediction per-
formance of PROF and PSIPRED(multiple) is better than
PHD and PSIPRED(single). Thus, the percentage accu-
racy(Qtotal) and MCC value of BTPRED is higher for
these methods. BTPRED shows a 2% improvement in pre-
diction accuracy when multiple protein sequence data is
included. This may be because the secondary structure
prediction from a multiple alignment of protein sequences
rather than a single sequence improves accuracy of sec-
ondary structure prediction and so does the β-turn predic-
tion accuracy.

DISCUSSION
The assessment of performance of a method (or technique
or process or machine) plays a vital role in the develop-
ment of any field of science. In this study, we have as-
sessed the methods for β-turn prediction in proteins. Both
from structural and functional point of view, β-turns play
important biological roles as reflected from the follow-
ing facts: (i) a polypeptide chain cannot fold into a com-
pact globular fold without β-turns; (ii) β-turns usually oc-
cur on the exposed surface of a protein and hence here
likely involved in molecular recognition processes; and
(iii) also play an important role in protein folding and sta-
bility. Thus, β-turn is an important component of protein
structure whose prediction can provide enormous informa-
tion to the researchers working in the field of protein struc-
ture prediction. The prediction of β-turns would not only
aid in overall tertiary structure prediction but also assists
in fold recognition studies.

It is apparent from the analysis that when β-turns are
predicted by all the methods by using their respective
original parameters and threshold values, BTPRED has
an overall higher prediction accuracy than the statistical
programs. The better performance of BTPRED is due
to the neural network-based learning algorithms and
inclusion of secondary structure information as com-
pared to that of statistical methods, which use simple
positional preferences and conformational parameters.
Chou–Fasman and Thornton’s algorithms perform better
than the correlation methods as evident from the ROC
values. Prediction at new threshold results in improve-

ment in prediction accuracy of all the methods. Again, at
new thresholds, Chou–Fasman and Thornton’s methods
have better results than the correlation models. At new
thresholds, 1–4 & 2–3 correlation model and sequence
coupled model have similar prediction abilities in terms of
prediction measures. The reason for their similar behavior
may be that both methods take into consideration the
coupling among the residues in a β-turn sequence during
prediction.

There has been significant improvement in the perfor-
mance of all methods when trained and tested on a new
data set using 7-fold cross-validation. It is because the ear-
lier statistical methods have suffered from a lack of suf-
ficient data. For example, Chou–Fasman algorithms have
used parameters based on the information from a small
set of 29 proteins. Moreover, an early problem in pre-
diction has been the inclusion of structures used to de-
rive parameters in the set of structures to assess the ac-
curacy of the method. Different methods can be ranked
depending on the values of Qtotal, Qpredicted, Qobserved
and MCC values. In terms of Qtotal and Qpredicted, the
Chou–Fasman algorithm performs better as compared to
other algorithms. However, for Qobserved and MCC val-
ues, the performance of the Chou–Fasman and Thornton’s
algorithms fall significantly. In case of Sequence Coupled
Model, there is a notable increase in Qobserved and MCC
values. Different methods have been compared by ROC
values. Sequence coupled model has achieved a higher
ROC value as compared to other methods which indicate
its better prediction ability.

BTPRED uses secondary structure information for pre-
dicting β-turns. Therefore, the prediction of β-turns has
been carried out by statistical methods by incorporating
secondary structure information. As inferred from the re-
sults, there is an increase in all prediction accuracy for all
methods.

The performance of BTPRED is evaluated by using
the secondary structure output from different methods.
The difference in predictive accuracy of BTPRED can
be primarily attributed to the difference in secondary
structure prediction accuracy of these methods. Therefore,
an increase in β-turn predictive accuracy is possible
as more effective protein secondary structure prediction
methods are developed.

CONCLUSION
This paper provides a benchmarking of different β-turn
prediction methods. BTPRED, which is a neural network-
based method, performs better than statistical method. The
performance of statistical methods increases significantly
when their statistical parameters were derived from the
recent/large data set of proteins. The accuracy of these
statistical methods has improved further when predicted
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secondary structure information is incorporated. This
study demonstrates that even the older statistical methods
can achieve a level of accuracy equal to current day neural
network methods, by careful refinement and consideration
of three state secondary structure prediction. The results
also indicate that the improvement in accuracy of β-
turn prediction over the years is mainly due to increase
in size of protein data set used for training rather than
due to improvement in technique. For example the older
statistical method of Chou and Fasman developed in 1974
can be brought up to the level of accuracy shown by
modern day methods such as neural networks, by using
new parameters and predicted secondary structure.

A combination of neural network and statistical ap-
proaches may provide substantially better results than
either one alone. A possibility for future research includes
combining a statistical method with a neural network
method. For example, the prediction resulting from a
statistical method may be used as one of the inputs to the
network. In this way, the network can be used to ‘fine
tune’ the results from the statistical method and improve
prediction accuracy.
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