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Abstract

Functional annotation of protein sequences with low similarity to well characterized protein sequences is a major challenge
of computational biology in the post genomic era. The cyclin protein family is once such important family of proteins which
consists of sequences with low sequence similarity making discovery of novel cyclins and establishing orthologous
relationships amongst the cyclins, a difficult task. The currently identified cyclin motifs and cyclin associated domains do not
represent all of the identified and characterized cyclin sequences. We describe a Support Vector Machine (SVM) based
classifier, CyclinPred, which can predict cyclin sequences with high efficiency. The SVM classifier was trained with features of
selected cyclin and non cyclin protein sequences. The training features of the protein sequences include amino acid
composition, dipeptide composition, secondary structure composition and PSI-BLAST generated Position Specific Scoring
Matrix (PSSM) profiles. Results obtained from Leave-One-Out cross validation or jackknife test, self consistency and holdout
tests prove that the SVM classifier trained with features of PSSM profile was more accurate than the classifiers based on
either of the other features alone or hybrids of these features. A cyclin prediction server- CyclinPred has been setup based
on SVM model trained with PSSM profiles. CyclinPred prediction results prove that the method may be used as a cyclin
prediction tool, complementing conventional cyclin prediction methods.
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Introduction

Cyclins were first identified in early 1980s in the eggs of marine

invertebrates [1,2]. Subsequently, cyclins have been discovered in

many organisms [3,4]. Cyclins bind and activate members of the

Cdk protein family to regulate the cell cycle. The periodicity of

cyclin concentrations during the cell cycle leads to periodic

oscillations in Cdk activity that governs the cell cycle control

system. Different cyclin-Cdk complexes are activated at different

points during the cell cycle [5–8]. Cyclins have been classified into

four general classes based on function and timing of activity

namely, G1, G1/S, S and M cyclins. In most species, diverse

multiple forms have been discovered, hence the cyclins were

further classified on the basis of amino acid sequence comparisons,

such as G1:C, D, E and G2:A, B cyclins and several other classes

[9]. Cyclin homologues have also been found in various viruses;

for example Herpesvirus saimiri and Kaposi’s sarcoma-associated

herpesvirus [10].

Cyclin family proteins are 30 to 65 kDa in size, sharing

considerable sequence heterogeneity but share some common

structural motifs known as ‘cyclin fold’. However, the conserved

‘cyclin fold’ is also found in general transcription factors (for

example TFIIB) and tumor suppressor retinoblastoma protein

[11]. Multiple alignments of the amino acid sequences of cyclins

have identified a region of similarity, extending around 100 amino

acids, termed as cyclin box [12,13]. The conserved region has

been termed as a cyclin related domain using Hidden Markov

models by Pfam database [14] and a cyclin motif in PROSITE

database [15]. However, the cyclin signatures are completely

absent in several annotated cyclin sequences. Some members of

G2/mitotic-specific and cyclin T family cyclins neither possess

PROSITE motif nor Pfam cyclin domains, as discussed later in the

dataset section. New cyclin genes and proteins have been

characterized using various strategies for example using BLAST

to identify cyclins in Caenorhabditis elegans, Drosophila melanogastor and

Homo sapiens [16], and Hidden Markov Models (HMM) based

methods in Arabidopsis genome [17]. In general, simple BLAST or

advanced PSI-BLAST (Position Specific Iterated BLAST, [18]) is

used as a first choice for functional annotation of predicted

proteins or proteins of unknown function. The choice of similarity

based approaches is reasonable only if query proteins are similar to

database sequences or profile generated from them. This

limitation is easily overcome by machine learning techniques like

Support Vector Machine (SVM).

SVM is a supervised learning algorithm, which has been found

to be useful in recognition and discrimination of hidden patterns in

complex datasets [19]. Prediction methods based on SVM have

been successfully exploited in many research problems involving

complex, sequence or biological datasets [20–22], like remote

protein similarity detection [23], DNA methylation status [24],

protein domains [25] and multiclass cancer diagnosis [26]. SVMs

learn from a training data sample consisting of both positive as
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well as negative examples of a classification problem along with

their features. The SVMs numerically finds the distinguishing

features of a particular class which may be used for classification.

In short, SVMs initially map input data (in terms of negative and

positive class input vectors) into a high dimensional feature space

using a kernel function [27–29]. The input or feature vectors in the

feature space are then classified linearly by a numerically

optimized hyper plane, separating the two classes [30,31]. The

hyper plane depends only on a subset of training examples, called

Support Vectors (SVs).

In context to the current study, SVMs learn the features specific

to the cyclin sequences and generate support vectors decisive for

possible classification of any given sequence as cyclin. For the

cyclin classification problem, a feature vector (xi) could represent

the Amino Acid Compositions (AAC), Di-Peptide Compositions

(DPC) of a protein sequence, Secondary Structure Composition

(SSC) or any other training feature. AAC gives a fixed input

pattern length of 20 whereas DPC gives a pattern of length 400

[32]. The fixed length pattern of training features is a basic

requirement of SVM training input. DPC features are better than

AAC features since it provides both the fractional composition of

each amino acid as well as their local order in the protein

sequence. Both the composition features were used as training

inputs to classify cyclin sequences from non-cyclin sequences using

SVM. Apart from the composition features, we also used the

feature vectors of the secondary structure information and PSSM

profile of the training sequences, obtained from PSIPRED (Protein

Structure Prediction Server [33]) and PSI-BLAST analysis

respectively [18]. We used SVMlight package [34,35] for imple-

mentation of the SVM training for classification of sequences.

The optimized classifier was trained with different properties of

a non redundant dataset consisting of 68 cyclin (positive dataset)

and 72 non cyclin (negative dataset) sequences (for details, see the

supporting information files). Different properties of sequences like

amino acid composition and dipeptide composition, and PSI-

BLAST results were used for training and optimization of the

classifiers. Optimization of different classifiers was performed using

Leave-One-Out (LOO) cross validation (CV) technique or

jackknife test, Self-consistency and Holdout tests. The biasness of

selected classifiers was checked by calculating prediction efficiency

for an independent dataset sequences not used in the training as

well as annotated sequences of Arabidopsis thaliana. Pfam and

PROSITE search of the training dataset cyclin sequences revealed

that cyclin associated domains and motifs are not present in all the

cyclin sequences. Principal Component Analysis (PCA) was also

performed for the training variables to find out the variables

important for distinguishing cyclins from non cyclin sequences.

Results

Performance of similarity based search (PSI-BLAST)
Three iterations of PSI-BLAST were carried out at E value

0.001. The performance of PSI-BLAST was evaluated using

jackknife cross validation method (identical to jackknife CV test

used for the evaluation of SVM models), where each sequence in

the training dataset was used as a BLAST query sequence and

remaining sequences were used as BLAST database. Thus, in the

process of jackknife test, each protein sequence is used as a test

sequence, and for other rounds; the sequence is included in the

training dataset. In PSI-BLAST output, it was observed that out of

68 cyclin proteins, no significant hits were obtained for 8 proteins,

thereby resulting in overall accuracy of 88.2%. This implies that

similarity-based search methods alone may not be the best choice

for functional annotation of proteins. Therefore, we decided to

explore methods based on other protein features for the prediction

of cyclin proteins.

Preference of amino acids in cyclins and non-cyclins
AAC (Amino Acid Composition) analyses of cyclin and non-

cyclin protein training sequences (Figure 1) reveal differential

amino acid propensities in cyclins and non-cyclin sequences,

especially with respect to that of Leu, Gly, Ala, Val, Lys and Asn.

The percentage composition of Leu, Ala and Val is higher in

cyclin protein sequences whereas the percentage composition of

Gly, Lys and Asn is higher in non-cyclin sequences used in the

training. AACs of other amino acids were not significantly

different in cyclin and non-cyclin protein sequences. It was

expected from the observations that the AAC information alone

was not enough to classify the cyclins. Hence, we used other

sequence features like DPC (Di-Peptide Compositions), SSC

(Secondary Structure Composition) and PSSM in conjunction

with AAC to train different SVMs based on different kernels.

Performance of standalone SVM models
We performed training-testing cycles recursively to develop

SVM models based on different features as well as combination of

all the features (referred to as hybrids) (Table 1). Initially, we

performed jackknife test (LOO CV) of AAC, DPC and PSSM by

Figure 1. Amino Acid Composition. Frequency of each of the amino acid in cyclin and non-cyclin protein sequences used in the training dataset.
The plot reveals the differential amino acid propensities in cyclins and non-cyclin sequences, especially with respect to that of Leu, Gly, Ala, Val, Lys
and Asn.
doi:10.1371/journal.pone.0002605.g001
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optimization with all the three kernels, namely: linear, polynomial

and RBF (Radial Basis Function).

Composition based models. We found that for the SVM

models based on AAC features, the linear and polynomial kernels

yielded similar accuracies (83.28% and 83.57%, respectively).

Optimizing the parameters with RBF kernel yielded an accuracy

of 83.57% which is comparable to that of the other two kernels

(Table 1). Hence, AAC based SVMs trained with different kernels

have similar accuracies. To check whether these accuracies are

due to artifact of the training dataset, we generated another sets of

non-cyclin sequences belonging to few non-cyclin families (for

example regulatory proteins and membrane bound proteins etc.)

and used them as non-cyclin dataset for training AAC based SVM

classifier: we found that each classifier had comparable specificity

and sensitivity values (results not shown here). For DPC feature

based model, the training classifiers based on linear and

polynomial kernels yielded accuracies of 83.74% and 81.43%

respectively. However, the RBF kernel yielded a higher accuracy

of 85.13% (for c= 12, C = 30). Accuracy of SSC based SVM

classifier was 80.71%, which is less as compared to that of the

AAC and DPC based SVM classifiers.

PSSM profile based classifier model. The optimization

with linear and polynomial kernels for PSSM profile based classifier

model resulted in ,91% accuracy for both the kernels. However,

SVM optimized with RBF kernel augmented the accuracy to

92.14% (for c= 1 and C = 32.5), which was the best performance

amongst the classifiers based on individual features. It had a

sensitivity of 92.64% and specificity of 91.66% with MCC of 0.842.

The comparison of results obtained with all the four features; clearly

demonstrate that the best classification efficiency was achieved by

the PSSM based model which incorporates the information about

residue composition, position specific substitutions and

evolutionarily conserved residues in the protein sequences. Also,

the efficiency of RBF kernel based discrimination between cyclins

and non-cyclins as compared to other kernels for AAC, DPC and

PSSM and ROC (Receiver Operating Characteristic) plot study

(Figure 2B) suggested that RBF kernel is more efficient and

appropriate for the cyclin training dataset and hence we used the

RBF kernel for evaluation of all the SVM classifiers.

Performance of hybrid-SVM classifier models
In our efforts to further improve the prediction accuracy, we

developed and evaluated eight hybrid SVM classifier models

(hybrid-1 to hybrid-8), results of which are summarized in the

Table 1.

Hybrid models based on two features. The first hybrid-

SVM model (hybrid-1) was developed using AAC and DPC features

of the training dataset sequences. The prediction accuracy of hybrid-

Table 1. Performance of SVM classifiers for various combinations of protein sequence features, kernels, parameters and validation
methods.

Model Feature Dm Validation ACC (%) SN (%) SP (%) MCC F1 Parameters

C c

Module1 AAC 20 a 83.57 83.82 83.33 0.671 0.712 1.5 84

Module2 DPC 400 a 85.13 85.29 84.72 0.699 0.734 30 12

Module3 SSC 60 a 80.71 76.47 84.72 0.614 0.658 7 10

Module4 PSSM 400 a 92.14 92.64 91.66 0.842 0.851 32.5 1

b1 97.85 97.05 98.61 0.957 0.889 47.5 0.5

b2 100 100 100 1 1 0.5 100

c1 i) 88.57 88.23 88.88 0.771 0.787 4 9.6

c2 ii)94.28 91.17 97.22 0.886 0.872 19 0.5

Hybrid-1 AAC+DPC 420 a 81.42 82.35 80.55 0.628 0.682 880 0.1

Hybrid-2 AAC+SSC 80 a 85.71 89.70 81.94 0.717 0.753 10.8 10

Hybrid-3 DPC+SSC 460 a 81.42 79.41 83.33 0.628 0.675 10.8 10

Hybrid-4 PSSM+AAC 420 a 91.42 92.64 90.27 0.828 0.84 230 0.1

Hybrid-5 PSSM+DPC 800 a 91.42 92.64 90.27 0.828 0.84 30 1

Hybrid-6 PSSM+SSC 460 a 92.14 92.64 91.66 0.842 0.851 19.2 1.5

b1 98.57 97.05 100 0.971 0.904 19.2 1.5

b2 100 100 100 1 1 0.5 50

c1 i) 88.57 88.23 88.88 0.771 0.787 0.5 30

c2 ii)88.28 82.35 86.11 0.685 0.753 3 7

Hybrid-7 PSSM+DPC+SSC 860 a 90.0 91.17 88.88 0.80 0.815 10 2

Hybrid-8 PSSM+DPC+AAC 820 a 91.42 92.64 90.27 0.828 0.84 200 0.1

b1 95.71 97.10 94.46 0.914 0.847 200 0.1

b2 100 100 100 1 1 0.5 100

c1 i) 85.71 73.52 97.23 0.731 0.862 0.5 19

c2 ii)91.42 97.05 86.11 0.834 0.774 0.3 4

Dm: dimension, a = Jackknife test CV, b1 = self-consistency test (mode 1), b2 = self-consistency test (mode 2), c1 & c2 = holdout-test, SN: sensitivity, SP: specificity, MCC:
Mathew’s Correlation Coefficient, F1: F1 statistics, C: tradeoff value, c: gamma factor (a parameter in RBF kernel).
doi:10.1371/journal.pone.0002605.t001
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1 model was 81.42% with sensitivity of 82.35% and specificity of

80.55%, which was not better than that of standalone AAC and DPC

based SVM models. The hybrids-2 and 3 were based on secondary

structure predictions, amino acid and dipeptide compositions. We

found that hybrid-2 has greater accuracy as compared to that of

hybrid-3 (85.71% and 81.42%, respectively); also better than the

accuracy of individual SSC or AAC based SVM models however,

comparable to the individual DPC based model. Further, when the

training was done using features from both AAC and PSSM (hybrid-

4) or DPC and PSSM (hybrid-5), the accuracy increased to 91.42%,

as compared to hybrids-1 to 3.

However, amongst the hybrid-classifier models based on two

features (hybrid:1–6), the best accuracy of 92.14% was achieved by

combining the SSC and PSSM pattern information in hybrid-6

classifier, with a sensitivity of 92.64% and specificity of 91.66%.

This SVM model has a MCC value of 0.842, highest amongst the

hybrid-SVM classifier models.

Hybrid models based on more than two fea-

tures. Considering the importance of conserved secondary

structures in cyclins, we decided to use SSC in conjunction with

the training features of the best hybrid-classifier developed till this

stage other than hybrid-6 (i.e. hybrid-5 based on PSSM and DPC

features). Hence, we developed another hybrid model using the

information from PSSM, DPC and SSC features (hybrid-7), with a

pattern length of 860 features. Unexpectedly, the accuracy of this

hybrid model was 90.01% (c= 2 and C = 10), lower than the

accuracies of hybrid-5 (PSSM+DPC = 91.42%) and hybrid-6

(PSSM+SSC = 92.14%) classifier models. Another hybrid model

Figure 2. Threshold-independent performance of SVMs. (A) ROC plot of SVMs based on different protein sequence features which depicts
relative trade-offs between true positive and false positives. The diagonal line (line of no-discrimination) represents a completely random guess.
Closer a point in the upper left corner of the ROC space, better is the prediction as it represents 100% sensitivity (when all true positives are found)
and 100% specificity (when no false positives are found). The PSSM based (standalone as well as hybrids) SVM models show a similar prediction
having AUC more than 95%. (B) Area under curve (AUC) obtained from the ROC plot. All SVM models are based on RBF kernel unless mentioned.
doi:10.1371/journal.pone.0002605.g002
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of PSSM, DPC and AAC (hybrid-8) was developed with which we

were able to achieve an accuracy of 91.42%, similar to that of

hybrid-4 and 5. Thus, the accuracy achieved by hybrid-6 and

PSSM based model were the best amongst all the hybrids and

standalone models, further supported by the highest MCC of these

models.

Self-consistency and holdout validation tests
We carried out self-consistency tests of the best models namely:

PSSM, hybrid-6 and hybrid-8 to evaluate their learning capability.

We used two different modes to carry out the self-consistency test

(as described in the methods). Mode-2 self-consistency test gave an

accuracy of 100% and a MCC of 1 (with different c values of RBF

kernel) whereas mode-1 showed different accuracies for respective

models (Table 1). It is interesting to note from mode 1 that PSSM

based model and hybrid-6 have comparable performances (,98%

accuracy) and better than hybrid-8 (,95% accuracy). A high

accuracy and MCC from self-consistency method implies that

SVM has inherited the intrinsic correlation between feature

vectors and the classification searched for.

Further, the performance of PSSM based model and hybrid-6

(PSSM+SSC) were assessed by holdout tests. The holdout test

results are highly convincing in terms of accuracies and MCCs

(,0.8 for PSSM model and ,0.7 for hybrid-6). The tests results

have ruled out any skewness, biasness or variance in the results due

to random splitting of the dataset. Also, as holdout tests simulate

the random/blind test performance for a large dataset, the results

obtained here reflect a strong discriminative power of the classifier.

Comparison of classifier’s performance with random
prediction and F1 statistics

Upon comparing the prediction reliability with that of random

prediction (Table 2), it was clearly observed that normalized

prediction accuracy S, in models trained with features like AAC

(67.12%) or DPC (69.98%) or even SSC (61.31%), were not better

than that of hybrids (.80% except hybrids 1–3) or highly

specialized feature like PSSM (84.27%). The two best models

obtained from this comparative study were PSSM based model

and hybrid model (hybrid-6, S = 84.27%). Again, F1 statistics of

both the models were similar (0.851) and better than that of others.

It suggests that precision and recall capacity of the models are

good enough to classify the protein classes.

ROC plot
For each SVM model, threshold-independent performance was

measured by plotting ROC curve between TP rate (sensitivity) and

FP rate (1-specificity) values. ROC indicates the performance of all

SVM models optimized with best parameters. Figure 2A shows the

details of AUC (Area Under Curve). The AUC for hybrid-6 and

PSSM model is 96.8% which is again the highest amongst all

AUCs of the other models. From the Figure 2B, area under curve

of simpler feature like AAC based SVM model, standardized with

RBF kernel is 89.4%, similar to linear and polynomial kernels

whereas more advanced features like DPC and PSSM has a better

AUC when optimized with RBF kernel as compared to other two

kernels. For example, AUC of DPC based model was 90% (RBF)

as compared to 84% (linear) and 89% (polynomial). This clearly

demonstrates that RBF kernel has much better ability in

distinguishing cyclin from non-cyclin sequences.

Performance on independent dataset
To evaluate the unbiased performance of the PSSM based and

hybrid-6 based SVM classifiers, an independent / blind-test

evaluation was carried out on the test set of 54 PROSITE false-

negatives (described in the methods). The prediction accuracy of

the PSSM classifier was found to be 98.15% as compared to that

of hybrid-6 (92.58%). The available cyclin HMM profile (Pfam

database) predicts cyclin domain for 50 sequences of this test set;

therefore it failed to predict 4 sequences. The PSSM based SVM

model was able to predict 3 out of 4 sequences, apart from

correctly predicting all other 50; making a total of 53 correct

predictions out of 54. However, the hybrid-6 classifier was able to

predict 50 sequences, similar to Pfam HMM profile prediction.

Therefore, the blind-test performance clearly established that the

PSSM based SVM classifier has better prediction capacity with

minimum error as false positives/negatives. Also, using the PSSM

based SVM classifier, we were also able to predict the 30 newly

identified cyclins in A. thaliana genome that were predicted earlier

by a HMM based method developed by Vandepoele et al. [17]. In

addition to these predicted proteins, with high SVM score cutoffs -

34 additional sequences were predicted as cyclins, for which no

annotations are available so far. It is important to mention here

that 25% of the predicted proteins in the A. thaliana genome, 8073

protein sequences, are yet poorly annotated and mostly described

as ‘unknowns’. However, an elaborative analysis and supporting

evidences may be needed from case to case before any significant

remarks can be made regarding these predicted cyclins.

Feature analysis using PCA
PCA was carried out to identify important elements from AAC,

DPC and PSSM features that are capable of distinguishing cyclin

from non-cyclin sequences. The PCA plots between PC1 and PC2

for each sequence feature was studied (Figure 3). From the figure,

it is evident that the clustering of positive and negative examples of

the training set and their mutual segregation in two dimensional

space gradually increased as we moved from the model based on

AAC (simplest of all features used) to a more advanced PSSM

feature based model. A brief description of each of the feature is

described below.

Amino acid composition. The component loadings plot for

first two principal components (PCs) describing amino acid

frequencies (Figure 3A) revealed the following facts:- PC1

Table 2. Estimation of quality for best SVM model for each
feature or combinations of features (hybrid models) as
compared to random prediction (S).

Model Feature Correct (TP+TN) S (%)

Module1 AAC 117 67.12

Module2 DPC 119 69.98

Module3 SSC 113 61.31

Module4 PSSM 129 84.27

Hybrid-1 AAC+DPC 114 62.85

Hybrid-2 AAC+SSC 120 71.47

Hybrid-3 DPC+SSC 114 62.79

Hybrid-4 PSSM+AAC 128 82.85

Hybrid-5 PSSM+DPC 128 82.85

Hybrid-6 PSSM+SSC 129 84.27

Hybrid-7 PSSM+DPC+SSC 126 80.00

Hybrid-8 PSSM+DPC+AAC 128 82.85

TP: true positive, TN: true negative.
S: percentage of random prediction.
doi:10.1371/journal.pone.0002605.t002

Predicting Cyclin Sequences

PLoS ONE | www.plosone.org 5 July 2008 | Volume 3 | Issue 7 | e2605



explains 28.1% of the total variance of the dataset; however, first

three PCs give a cumulative variability of 59%, exceeding to

75.7% for first 6 PCs. The strongest contribution to PC1 is by Asn,

Ala and Arg amino acids as AAC. Asn (loading 0.586) and Lys

shows positive correlations, whereas Ala (loading 20.477) and Arg

shows negative correlations to the component. Similarly, PC2

(19.16% explained variance) correlates with Glu (loading 0.754)

and is negatively related to Ser residue contribution (loading

20.253). Interestingly, Lys contributes almost equally to first two

PCs (loadings as 0.389 and 0.374 for PC1 and PC2 respectively). It

was observed that Ser contributes maximally to PC3 (11.6%

explained variance) with component loading value of 0.56 and is

negatively related to Leu (loading 20.401). The findings were

closely correlating with the PC weight plot for AAC (Figure 3B).

Similar results were observed when PCA was performed for each

of the randomly splitted equal halves of the dataset; consisting of

approximately same number of cyclin and non-cyclin sequences of

AAC training dataset (identical to the holdout evaluation method

in SVM) (data not shown here).

These findings are in agreement with the observed prevalence of

amino acids in cyclins and non-cyclins (Figure 1) which indicates

Ala and Leu in cyclins and Asn and Lys in non-cyclins give major

contributions to first three principal components. This analysis

offers some hints about distinguishing determinants in AAC

model. However, the importance of Gly residue needs a closer

look as it was not very prevalent distinguishing element in PC

loadings plot though its sequence composition is substantially

different between cyclin and non-cyclin sequences.

Dipeptide composition. Component loadings for the first

three principal components explain only 21% of the variability of

the dataset (Figure 3C). The high amino acid composition of Asn is

clearly reflected in dipeptide composition too and it is principally

contributing to PC1 (loading 20.489). In fact, most of the

dipeptide compositions were following the observed trend of

prevalence of amino acid composition. For example, dipeptides of

Ala with Ala, Leu, Arg, and Ser have higher weightage towards

PC1, correlating with that of the cyclin sequences. However, Ser-

Ser, Ser-Ala, Ser-Asn dipeptides and their vice-versa were

Figure 3. Component loadings for the first two Principal Components (PC). (A, C, D) Superimposed plot of component loadings of features
used (AAC, DPC and PSSM) and training dataset from PCA analysis - showing the feature usage variability, thereby showing what degree the original
variables contribute to the PCs. The plot signifies the correlations between amino acids by virtue of its loading scores as well as relative abundance in
cyclins and non-cyclins to each of the PC analyzed. Green, red and blue spots represent cyclin, non-cyclins and component loadings of feature used,
respectively. (B) PC weight plot of each of the 20 amino acids for the first three PCs of AAC model. The plot signifies the discriminative properties of
amino acids to specific PCs by virtue of its loading scores.
doi:10.1371/journal.pone.0002605.g003
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predominantly correlating with PC2 and non-cyclin proteins in

majority. Although, a very strong correlation of training dataset

examples and its dipeptides seems to be present, but as compared

to PCA of AAC, a better partitioning of feature (dipeptides) among

positive and negative examples of the training dataset was

observed.

PSSM profile. The principal component loadings of PSSM

profile reveal that PC1 is capable of gathering 27.7% of total

variance of the dataset (Figure 3D). In totality, first three

components grasped upto 58% of the variance with individual

variances of 18% and 12% for PC2 and PC3 respectively.

Conservative substitution of amino acids is a general phenomenon

in protein sequences and was also observed in the scatter plot like

Ala by Ala, Lys by Lys, Arg by Lys or Glu by Asp. The Ser and

Asn substitutions were observed to be clustered more cohesively as

compared to clustered distribution of Ala, Arg, Ile in cyclins and

Lys and Glu in non-cyclins. Some of the outliers in the plot were

observed to be unusual substitutions such as Asn by His, Asn by

Thr and Lys by Gln, Glu by Ser which might be due to dominance

of certain amino acids specific to the certain cyclin sub-classes

under study.

Implementation of best classifier as CyclinPred web
server

The best classifiers developed in the current study are publicly

available at ‘‘http://bioinfo.icgeb.res.in/cyclinpred’’ The home

page of the webserver is simple and designed using HTML and

PHP (Figure 4) which accepts a protein sequence inputs in FASTA

format. One may choose either of the given prediction strategies

on the server: PSSM profile based model (the best model as default

model), Hybrid model (PSSM+SSC) and Consensus method (a

sequence will be predicted as cyclin only if both hybrid and PSSM

models predict the sequence as cyclin). To check the time and

memory constraints of running predictions on the server

(CyclinPred is currently hosted on a AMD 852 4 processor

server), we submitted two test sequences: the shortest cyclin

sequence in the training dataset and the longest amino acid

sequence (a titin protein sequence) in the SwissProt (release 55.2).

The server returned the results were in 0.47 and 11.8 seconds

respectively for the sequences. In a similar test run, complete

results for all A. thaliana proteins were returned in 5 minutes and

42 seconds. The results reflect that the prediction method is not

too computational intensive.

Discussion

Recently, artificial intelligence based techniques like SVM have

been used in solving problems in computational biology – including

extraction of complex patterns in biological sequence databases and

its use in training and classification using SVMs. Although the major

limitation of SVM based methods is the requirement of fixed-length

input patterns, however it is completely independent of sequence

similarity. This makes SVM based methods a unique tool for

analyzing proteins with very low sequence similarity. Here, we have

implemented a SVM kernel-based method to develop a robust

method for identification of cyclins.

Initially, the fixed length pattern of 20 was used based upon

amino acid composition for the classification of proteins. This

feature was earlier used to develop a method for subcellular

localization of proteins [36,37]. However, this feature provides no

information about the local order of amino acids in the protein.

This deficit was overcome by using dipeptide composition of

amino acids giving a length of 400 [38]. The performance tuning

and efficiency of the models based upon these features;

individually, has been evaluated using jackknife CV, self-

consistency and holdout methods. An accuracy of 83.57% and

85.13% with RBF kernel was achieved by jackknife test for

classifiers based on AAC and DPC features, respectively. Such

values are impressively high in context of differentiating cyclins

from non-cyclins. The protocol also demonstrates that it doesn’t

rely upon remote sequence homology for cyclin prediction. Since,

the cyclin box of cyclins contains several conserved alpha helices

and extended beta sheets joined by short turns [13], this secondary

structure information is a valuable feature to provide global

information in conjunction with amino acid and amino acid pairs

compositions. However, the SVM model trained with PSIPRED

SSC features was found to have an accuracy of 80.71% (Table 1),

lower than other models. The precise conformation of an amino

acid also depends, along with other factors, on factors such as the

neighboring residues, physico-chemical nature, and local folding

stress. The preference of an amino acid for each of the three

secondary structures (helix, sheet and coil) can provide us more

elaborative features of the structure of a protein. Such feature

vectors will encompass more valuable information as compared to

mere percentage of secondary structures. However the boundaries

(and sequence lengths) of secondary structure patterns are not

conserved, hence it is difficult to convert this information into

feature patterns of fixed length suitable for training SVMs. This

suggests that structural information alone may not be sufficient

enough to distinguish cyclins from non-cyclins. This is also due to

sharing of some common structural folds by cyclins and non-cyclin

proteins, as is evident in the case of TFIIB and retinoblastoma

proteins. However, remarkable accuracy of 92.14% was achieved

with PSSM based SVM model. The embedded information of

amino acids composition, their position-specific conservation and

evolutionary relationship between different cyclins in the gener-

ated PSSM model makes it a robust model for achieving higher

accuracy with strict maintenance at training-error level.

With a view to further enhance the prediction accuracy; we

developed SVM classifiers trained with combinations of different

features to generate hybrid models. We used amino acid,

dipeptide, secondary structure composition and PSSM profile for

generating the hybrid models. Amongst all the hybrid models

developed, the SVM hybrid-6 model trained with secondary

structure composition and PSSM profile optimized with RBF

kernel, achieving the competing prediction accuracy with that of

PSSM based model of 92.14% with sensitivity and specificity of

92.64% and 91.66%, respectively. Also, the AUC obtained from

ROC curve was best for PSSM model and hybrid-6 model with

96.8%. It reflects that highly comprehensive but condensed and

meaningful information is required to attain such high prediction

accuracy.

However, the prediction accuracy on independent dataset;

representing a true unknown prediction showed that PSSM based

model was able to predict 53 out of 54 sequences (as compared to

50 by hybrid-6 and HMM profiles of Pfam database). Overall,

PSSM based model was able to achieve an accuracy of 98.5% as

compared to 95% by hybrid-6.

Thus, these results not only confirmed that optimized SVM is able

to learn crucial features responsible for the accurate classification but

also, it helps us to understand that prediction accuracy can be

increased by providing more comprehensive information of a

protein sequence. Moreover, our studies reiterate that biological

patterns generally follow non-linear equations/functions which may

not be easily predictable by conventional computational methods.

This is fact is well exemplified by the classification task undertaken in

our study in which we found that the models optimized with linear

kernel functions are less accurate as compared to those trained with
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non-linear functions. For example, with linear kernel, the accuracy

achieved in case of DPC based model was 81.43% as against 85.13%

with RBF kernel. Similarly, PSSM based model achieved 92.14%

accuracy when optimized with RBF kernel as compared to ,91%

with linear kernel.

The reason behind better performance of the model developed

by us is mainly because we have used a statistical learning method

which generates prediction models by learning from large complex

datasets, also taking care of over-fitting problem. In most of the

cases, a small fraction of total examples in the training dataset

were used to gather all the information required for generating the

classification model, thus the original dataset is filtered to make

more informative and representative dataset in terms of Support

Vectors (SVs) of representative sequences. In the study, the

number of SVs finally chosen by SVM for training (PSSM and

hybrid-6 based models) are 53 and 77 (out of 140 training

sequences) which is just 38% and 55% of the total dataset,

respectively. In the hybrid-6 model, training with information

from both – the PSSM and secondary structure information as

input to the classifier enhances both the prediction accuracy and

reliability of the models generated.

Furthermore, the PCA analysis of the features has proven that

the features which encapsulate comprehensive information about

sequences help better segregation of training examples and

enhances their correlation with the features under study. This is

exemplified by the case of PSSM based model as compared to

other feature based models.

The advantage with the present prediction method lies in the

fact that classifier is independent of any sequence or structural

similarity to any known proteins. The absolute inheritance of

cyclin domains or motifs in proteins is not a mandatory object for

prediction. The method can even predict those cyclins which have

high sequence variability like cyclin M, T or some G2-specific

cyclins. The results obtained from current implementation of

features are highly encouraging. In future, more cyclin specific

features may be included for enhancing the efficiency of the SVM

Figure 4. CyclinPred server. (A) Snapshot of CyclinPred server (B) Sample prediction result.
doi:10.1371/journal.pone.0002605.g004
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model and subfamily specific classifiers may be developed. To

develop subfamily-specific SVM classifiers, sufficient number of

sequences representing each subfamily will be required. Currently,

the number of cyclin sequences from each subfamily, is too low for

developing subfamily-specific classifiers. Almost all the subfamilies

have less than or equal to five sequences per group in the training

dataset. Only cyclin B subfamily is represented by more than 30

sequences (Table S1, also see Table S2 for list of organisms and

corresponding cyclin sequences in the training set). However, with

the increase in the number of annotated cyclins in future,

representing each subfamily, it should be possible to develop

subfamily-specific SVM classifiers.

Materials and Methods

Data Source and Generation of Non Redundant Training
Datasets

Classification efficiency of a SVM model depends a great deal

on the quality of dataset used in training. The cyclin and non-

cyclin sequences used as training dataset in the present work were

obtained from different sources of manually curated and

annotated sequence databases, including SwissProt [39], RefSeq

[40] and other organism specific databases. Protein sequences

annotated as ‘hypothetical’, ‘truncated’, ‘fragmented’ or ‘partial’

were excluded from the dataset. It is known that both transcription

factor IIB and retinoblastoma proteins contain the cyclin

associated conserved cyclin-box fold [11] and hence these proteins

were included in the negative dataset. The manual filtering yielded

a dataset of full-length and annotated cyclin and non-cyclin

protein sequences.

Subsequently, the redundancy in the dataset was brought down

to 30 percent using PISCES algorithm [41]. This implies that no

two sequences in the training dataset are more than 30 percent

identical to each other. After scaling down the redundancy, the

final dataset used for training consists of 68 cyclin (Dataset S1) and

72 non-cyclin (Dataset S2) sequences. These sequences were used

to generate features for the SVM training-testing protocol used in

the study (available at the CyclinPred server). The percentage

identity of most of the training dataset cyclin sequences lie between

15–25% (there is a pair which is 100% non-similar) whereas

amongst non-cyclins most of the sequences are 15–20% similar.

The identity of cyclin and non-cyclin sequences in the training

dataset varies between 16–20%. The dataset includes cyclins from

all cyclin subfamilies (20 different subfamilies); however the

number of sequences representing each family was reduced due

to sequence redundancy reduction. The highest score between

most divergent cyclin sequence, Q9DEA3|PCNA_CHICK and

any non-cyclin sequence is 18.9% identity with a sequence of

transcription initiation factor IIB from Guillardia theta (closest non

cyclin sequence). The lowest score is 0.8% identity with a

Cytochrome b protein from Dictyostelium discoideum.

Dataset for Blind-test performance
It has been reported that the performance of N-fold CV is not

completely unbiased [21]. In order to assess the unbiased

performance of our final SVM classifier, we evaluated its

performance on a dataset not used in the training or testing. For

this, we used a dataset of 61 false negative sequences from

PROSITE database (cyclin sequences which do not have the

cyclin PROSITE motif PS00292). Positive dataset training

sequences common to these sequences were excluded; leading to

an independent dataset of 54 cyclin sequences (Dataset S3). The

accuracy, thus obtained reflects the true blind predictions for the

test set. The performance of the best classifiers was also compared

with available cyclin domain HMM profiles from the Pfam

database (cyclin_N: PF00134, cyclin_C: PF02984 and cyclin:

PF086 13).

Assessment of training dataset for the presence of cyclin
domain and motif

We performed pfscan search to look for PROSITE cyclin motifs

in the 68 positive dataset sequences used in the SVM training. The

cyclin motifs were found in only 35 out of the 68 cyclin sequences.

We also found that 61 protein sequences had one of the cyclin

associated Pfam domains. Comparisons of these annotated cyclin

sequences showed that 6 proteins neither contain the Pfam cyclin

domains nor the PROSITE cyclin motifs. This emphasizes the fact

that all the known annotated cyclins are not represented by Pfam

domain families and/or PROSITE signatures.

SVM algorithm and problem formulation
SVMlight, an implementation of Support Vector Machines

(SVMs) in C language was used for the current study. The

SVMlight (http://svmlight.joachims.org/) allows optimization of

SVM models by changing a number of parameters, including

types of kernels (linear, polynomial, radial basis function or

sigmoid) to perform the classification task. It is similar to solving a

quadratic optimization problem (QP) and the decision function

can be solved as

F xð Þ~sign
XN

i~1

yiaiK xixj

� �
zb ð1Þ

where xi J R (real number) is the pattern used for the classification

and yi is the corresponding target value, which is +1 for cyclins and

21 for non-cyclins. ai is the value provided by QP. The separating

hyperplane generated by SVM model is given by

f xð Þ~W xð Þwzb ð2Þ

Where, w is a vector normal to the hyperplane and b is a

parameter that minimizes IwI2 and satisfies the following

conditions:

w:xizb§z1 for yi~z1, positive class ð3Þ

w:xizbƒ{1 for yi~{1, negative class ð4Þ

Evaluation Methods
The entire dataset of ‘N’ number of sequences was divided into

training and testing sets for which SVM parameters were

optimized by Cross Validation (CV) method. The parameters

were optimized by CV over the training set by maximizing the

accuracy and minimizing the training error. In the study, we

implemented three methods of evaluation to check the perfor-

mance of classifier models, namely- Leave-One-Out CV (LOO

CV) or Jackknife CV test, self consistency and holdout tests.

In the first method, the jackknife test is a CV technique in which

one dataset sequence is used as a testing data (for validation of the

generated model) while the remaining dataset sequences are used

as the training data to develop a model. This is iterated N times till

each sequence in the dataset become the testing data exactly once.

In each of the iterations, the parameters corresponding to the best

Predicting Cyclin Sequences

PLoS ONE | www.plosone.org 9 July 2008 | Volume 3 | Issue 7 | e2605



accuracy are recorded and then averaged for the final overall

evaluation of the model. We also performed self-consistency test in

which the entire dataset is used for the training as well as for

testing to validate the generated model. This test indicates the

confidence level of the model as it inherits the internal knowledge

of the training dataset. Self-consistency test was carried out in two

modes, differing in the use of kernel parameters. In mode-1, the

performances of the models were checked by using the best kernel

parameters as evaluated by jackknife CV test performed earlier. In

mode-2, the performances of the models were checked by using

new kernel parameters to achieve the best accuracy during the self-

consistency tests.

The rationale behind using two modes was that mode-1 would

provide the self-learning capability of the model on those

parameters which have been obtained from cross-validation with

jackknife test as well as this model will be used for prediction

purpose whereas mode-2 would provide the self-learning capabil-

ity of the model on those parameters which have not been involved

any cross-validation or partitioning of the dataset and therefore,

reflects the consistency of the prediction model.

In the third method of evaluation, namely the holdout test, the

dataset is randomly split into two equal halves, with approximately

equal numbers of positive and negative dataset sequences. SVM is

then trained with one of these subsets with Jackknife CV test to

find best parameters. The performance is then evaluated by testing

the optimized parameters on the second subset. This test indicates

the prediction efficiency of the models for sequences independent

of the training.

We also evaluated the performance of the SVM model by the

following measures:-

1) Sensitivity: percentage of cyclin protein sequences that

are correctly predicted as cyclins.

2) Specificity: percentage of non-cyclin protein sequences

that are correctly predicted as non-cyclin sequences.

3) Accuracy: percentage of correct predictions, for cyclins as

well as non-cyclin sequences.

4) Mathew’s Correlation Constant (MCC): employed for the

optimization of parameters and evaluation of perfor-

mance [42].

MCC = 1 signifies perfect prediction while MCC = 0 suggests

completely random prediction. The above mentioned evaluations

may be represented mathematically as given below.

Sensitivity~
TP

TPzFN
|100

Specificity~
TN

TNzFP
|100

Accurracy~
TPzTN

TPzFPzTNzFN
|100

MCC~
TP � TNð Þ{ FN � FPð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFNð Þ � TNzFPð Þ � TPzFPð Þ � TNzFNð Þ
p

ð5Þ

where, True Positive (TP) and True Negative (TN) are correctly

predicted cyclin and non-cyclin sequences, respectively. Similarly,

False Positive (FP) and False Negative (FN) are wrongly predicted

non-cyclin and cyclin protein sequences, respectively.

All the above mentioned measures are threshold-dependent i.e.

the prediction performance is evaluated for a fixed SVM cutoff

score or threshold. To calculate threshold-independent perfor-

mance, a Receiver Operating Characteristic (ROC) curve was

plotted between TP rate (sensitivity) and FP rate (1-specificity)

[43]. The Area Under the Curve (AUC) describes inherent

tradeoff between sensitivity and specificity and thereby measures

the accuracy of the SVM model.

Another important consideration is whether the present

prediction method is better than a random prediction. To check

the reliability of the method, we first calculated R, an anticipated

number of proteins that are correctly classified by random

prediction [44]:

R~
TPzFNð Þ � TPzFPð Þz TNzFNð Þ � TNzFPð Þð Þ

TPzTNzFPzFNð Þ ð6Þ

Subsequently, we also calculated S, the normalized percentage

of correctly predicted samples better than random i.e. the method

is independent of the scale of total samples in the dataset and R:

S~
TPzTNð Þ{Rð Þ

TPzTNzFPzFNð Þ{Rð Þ � 100
ð7Þ

Therefore, value of S = 100% stands for a perfect prediction and

S = 0% for a worst prediction.

Among all common statistical measures like accuracy, specificity

and sensitivity, F1 statistic is a more robust measure as other

measures can overstate the performance of the classifier. F1

statistic is a harmonic mean of precision and recall (or between

sensitivity and positive predictive value), given by equation 8:

F1~
2xTP

2xTPzFPzFN
ð8Þ

Finally the best SVM model on the basis of accuracy, MCC, S

(random prediction), F1 statistic and other statistical measures is

validated against the test set not used in the training using the

blind test independent datasets.

Calculation of Protein Features
Amino acid composition (AAC). The following equation

was used to calculate AAC,

Fi~
Total number of amino acid i

Total number of amino acids in the protein
ð9Þ

where i is any of the 20 amino acids.

Dipeptide composition (DPC). The fraction of each

dipeptide in the protein was calculated by the following formulae,

Fj~
Total number of dipeptide j

Total number of possible dipeptides in the protein
ð10Þ

where j can be any of the 400 dipeptides.

Secondary Structure Composition (SSC). Secondary

structure is an important feature of cyclins due to its

characteristic helical domains assuming helix rich cyclin-folds,

containing the cyclin-box [13,45]. Secondary structure prediction

was carried out by PSIPRED v2.4 which is a simple and reliable

prediction method. The method incorporates two feed-forward

neural networks that perform an analysis on the output obtained

from PSI-BLAST v2.2.4. PSIPRED predicts secondary structure

for each residue and provides a confidence score for three types of

secondary structures: helices, b-sheets and coil regions. For each of

the amino acids, the scores corresponding to helix, sheet and coils
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are extracted and averaged respectively, thereby making a matrix

of 60 (2063::amino acids6secondary structures). Following

equation was used to calculate the features corresponding to

secondary structure prediction,

Fk,j~

Addition of scores having a secondary structure k for amino acid j

Frequency of the amino acid j in the protein

ð11Þ

where k can be any of the 3 secondary structures (helix/sheet/coil)

and j can be any of the 20 amino acids.
Position Specific Substitution Matrix (PSSM)

profile. This model was designed using PSI-BLAST v2.2.4

output. For each amino acid, PSI-BLAST give 20 substitution

scores in the PSSM which provides the evolutionary information

about the protein at the level of residue types. Three iterations of

PSI-BLAST were carried out at cut-off E-value of 0.001. Each

value in the PSSM represents the likelihood of a particular residue

substitution at a specific position of a protein class and it was

normalized between 0 and 1 using the logistic function as shown in

equation 12 [46]

g xð Þ~ 1

1zexp {xð Þ ð12Þ

Where x is the raw value in PSSM profile and g(x) is the

normalized value of x. Following this, the normalized matrix is

organized into a composition matrix of fixed length pattern of 400

(20620, for each amino acid, there are 20 substitution scores from

normalized matrix). Normalization was done for other features also.

Principle Component Analysis (PCA)
PCA leads to a linear combination (projection) of the original

variables of high-dimensional data and thereby, is used to calculate

orthogonal variables from raw data matrices. PCA analysis was

performed to identify different feature element variables from

AAC, DPC and PSSM that are important for distinguishing

cyclins from non-cyclins. Thus, it was performed with the objective

of obtaining new variables that are uncorrelated among themselves

(i.e. orthogonal) from the original ones and to reduce the

dimension of data to unity with the minimum loss of information.

Using ‘‘princomp’’ function of MATLAB, we extracted the PCs by

using the same data matrices which were also used as input for

SVM training. The scatter plots of scores of first two principal

components for AAC, DPC and PSSM matrices are shown in the

Figure 3A, C and D.
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