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Abstract

Background

In the past, numerous methods have been developed for predicting antgems or B-cel|

epitopes that can induce B-cell response. To the best of authors’ kgewtex method hg
been developed for predicting B-cell epitopes that can indugedfis class of antibod
(e.g., IgA, 1gG) except allergenic epitopes (IgE). In this study, #ngit has been made
understand the relation between primary sequence of epitopes anldshefcantibodie
generated.

Results

The dataset used in this study has been derived from Immune Epittgim&mand consis
of 14725 B-cell epitopes that include 11981 IgG, 2341 IgE, 403 IgA specifigpepitanc
22835 non-B-cell epitopes. In order to understand the preference of resrdoesifs in
these epitopes, we computed and compared amino acid and dipeptide commddiyG,
IgE, 1gA inducing epitopes and non-B-cell epitopes. Differences in catigrogrofiles of

different classes of epitopes were observed, and few residuesfougrd to be preferred.
Based on these observations, we developed models for predicting ardiasshgpecific Br

cell epitopes using various features like amino acid composition, dipegmposition, an
binary profiles. Among these, dipeptide composition-based support vector maubdied
achieved maximum Matthews correlation coefficient of 0.44, 0.70 andf@.4§G, IgE ang
IgA specific epitopes respectively. All models were developed pererentally validate
non-redundant dataset and evaluated using five-fold cross validation. Itomaddhe
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performance of dipeptide-based model was also evaluated on independent dataset.




Conclusion

Present study utilizes the amino acid sequence information fdicping the tendencies of
antigens to induce different classes of antibodies. For the ifitst itn silico models havs
been developed for predicting B-cell epitopes, which can inducéispgass of antibodies.
A web service called IgPred has been developed to serve thef&ciemtnmunity. Thig
server will be useful for researchers working in the fieldsabunit/epitope/peptide-based
vaccines and immunotherapy (http://crdd.osdd.net/raghava/igpred/).
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Background

Innate and adaptive immune responses are the two main arms omhuste system to

combat invading pathogens. The innate immunity, also known as firstidiease, is non-

specific and responsible for the immediate action against iofecOn the other hand,

adaptive immunity is a highly specialized type of defensteByswhere the immune system
first recognizes pathogen and then develops pathogen-specific elafeshanisms. In

addition, adaptive immunity also generates memory cells that can hatibgen effectively

and rapidly if the system is attacked later by the same pathothe adaptive arm of
immunity can be divided broadly into two categories; humoral andresdiated, responsible
for activating B-cells and T-cells respectively.

Vaccination is an artificial procedure for sensitizing immuesponse or generating memory
cells against a desired pathogen. Over the years, subunit vaccige das become an
integral part of vaccine design in which immunogenic region of praseirsed instead of
complete pathogen or antigen [1]. Antibodies (Abs) are one of theriemt components of
humoral immunity where B-cells recognize antigenic regions oelBepitopes (BCEs) and
generate antigen specific Abs. These Abs perform variousdascuch as phagocytosis [2],
cell-mediated cytotoxicity [3], neutralization, compliment activationgdd mast cell binding
[5]. Broadly these Abs can be categorized in five classelatesi.e., IgA, IgD, IgE, 1gG,
and IgM.

It has been observed in the past that particular pathoggafantiduce defined class or
subclass of Abs, for example, infections like schistosomiasis iemdis induce a mixed
response of IgE and IgG [6-8]. In case of protozoan Rkasmodium falciparum, Ab

response of merozoite surface proteins constitutes mainly IgG1 aldslgselasses [9,10].
On the other hand, viruses like rotavirus, HIV and influenza virus,wale known for

inducing IgA type of response [11]. In case of IgE inducing antigallergens), the studies
showed that the allergens have some features that make tleegeratt [12]. These facts
together suggest that there are desired effector functiosbsf which are needed to



encounter various types of pathogens. Thus, it is important to undevstgnthe immune
system produces different classes of antibodies against difeeregéns. This understanding
will help an experimental biologist to design a better vaccinghiainduction of systemic or
mucosal immunity as well as immunotherapy. In the past, numerousagdasaand methods
have been developed for maintaining and predicting BCEs in an antiget6]. Till date,
limited efforts have been made to develop the method for predictergeais or BCEs that

can induce IgE type of antibodies [17,18]. To the best of authors’ knowledge, no
comprehensive attempts have been made for predicting BCEs respdosibieucing
specific class of Abs or discrimination of epitopes that induce different afladss.

In this paper, we have made an attempt to understand the rdbatimeen amino acid
sequence of epitopes and type of Abs they will induce. First we ¢@iected 1gG, IgE and
IgA specific BCEs from Immune Epitope Database (IEDB). Subseyi¢hese three classes
of epitopes were analyzed to understand which residues or group of seardupreferred
among these sequences. Based on comparative analysis, we devetapetibprmodels
using various features like amino acid composition, dipeptide compositionbiaady
profiles. We also developed a user-friendly platform for the sGeegbmmunity that allows
users to predict IgG, IgE and IgA specific BCEs.

Results
Analysis
Composition analysis

In order to ascertain whether certain types of residuedargnated in different classes of
BCEs, the percent average amino acid composition of IgG, IgE and IgKicBCEs and
non-B-cell epitopes (non-BCEs) was calculated and compared (Figur&he analysis
revealed that there are differences in the percent average agid composition profiles of
four classes (lgG, IgE, IgA, and non-BCES) of epitopes. As shown in Flgwertain types
of residues are abundant in each class, for instance Pro and @buadant in IgA inducing
epitopes while Cys and Glu are found to be dominated in IgE inducingpepi These
observations are in accordance to several previous reports, where &sclaacle shown that
there is a propensity of Cys residues in IgE inducing epitopes, had form stable
conformational epitopes through disulphide bonds [19-25]. It has also beeneabsethe
past that IgA binding antigenic regions are Pro/Gly rich [26,27].

Figure 1 Comparison of average amino acid composition of different class of epitopes.

Dipeptide composition provides more information than amino acid congositid has been
used in the past for developing various classification models [28-30hawéealso computed
and compared average dipeptide composition for each class of epigpesgE, IgA and
non-BCE). It was observed that each class of epitopes hasdgpas of dipeptides having
significantly higher composition (Welchtgest) than other class of epitopes. Dipeptides AS,
GP, WK, YR,etc. are prevailing in 19G; IQ LA, NA, NEgtc. are frequent in IgE, and ED,
FP, PF, PQ, PY, QRic. are predominant in IgA class of epitopes (Additional file 1).



Residue preference

In order to understand the preference of residues at differeniopesih epitopes, we
analyzed two sample logos [31] of each class (Figure 2). As showdigure 2, certain
residues are preferred at specific positions in each classeXaonple, in 1gG inducing
epitopes, Pro, Gly and Met are preferred at the first position emdrfél Arg are preferred at
second position. Overall, Pro is found to be preferred at almost eveitjompo# IgE
inducing epitopes, GIn, Glu and Cys are found to be preferred at variatisrEodn IgA
inducing epitopes, an exclusive preference of Gln and Pro is observed (Figure 2).

Figure 2 Two sample logos for each class of epitopes where epitopes of a class is taken
positive and the rest of peptides as negative examples.

Length of epitopes

In order to understand whether the length of epitopes playsobnin inducing specific class
of antibodies, we examined the length of different class of epitdgeshown in Figure 3,

most of the epitopes are between 4 and 20 residues in length, onlgifepes having length

more than 40 residues. Analysis revealed that more than 55% IgAicsepdiopes are less
than 10 residues in length while more than 45% IgE specific epitvpdsetween 11 and 15
residues in length. IgA inducing epitopes have length between 4-10 residues.

Figure 3 Lengthwise distributions of class-specific epitopes.

Physico-chemical property analysis

We computed and compared the physico-chemical properties ajusaepitopes to
understand their correlation with antibody-class specificity. Vdendit find any significant
differences in physico-chemical properties between theedasf epitopes (Additional file 2:
Figure S1), except polar, aliphatic and positively charged resiadreéch showed differences
in their composition both in IgA and IgE classes. In the past, fiempts have been made to
differentiate BCEs from non-BCEs based on physico-chemical prepemid shown similar
observations [32].

Motifsanalysis

Since motif-based distinction of IgA epitopes has been reported pattd¢ll], we extracted
motifs from other classes (IgG and IgE) considering the facfélhamotifs might be present
in these classes, as well. We performed MEME (see methodrgestiidies for the discovery
of motifs in all classes and extracted 20 motifs at defartirpeters of MEME (Additional

file 3: Table S1). We have implemented this motif information atseawver where user can
scan their epitopes for the presence of specific motifs.

Models for predicting antibody-specific BCEs

In this study, we have developed numerous models for predictinddgGand IgA specific
BCEs. We built models for each class on all the datasetspdiiermance of models was
optimized, for example, in case of SVM; parameters were twredllfthree types of kernels
linear, polynomial and radial bias.



SVM'"" models developed on BalanceVar dataset

(i) Composition-based model. Since significant differences were observed in amino acid and
dipeptide composition of each class of epitopes, first we have developed SVM models
using amino acid composition as input feature and achieved maximum MCC values 0.28,
0.51 and 0.43 for IgG, IgE and IgA respectively. The performances of amino acid
composition-based models are summarized in Table 1 and Additional file 3: Table S2.
Next, SVM models were developed based on dipeptide composition of epitopes.
Dipeptide-based models performed better than the amino acid composition-based model
and achieved maximum MCC of 0.41, 0.66 and 0.44 for IgG, IgE and IgA respectively
(Table 1 and Additional file 3: Table S2). Detailed performances of dipeptsiziba
model at different thresholds are summarized in supporting information (Additilenad
Table S3).

Table 1 The performance of SVM models developed for predicting antibody speaf
BCEs on BalanceVar dataset using various features

Input pattern IgG epitope IgE epitope IgA epitope
ACC MCC AUC ACC MCC AUC ACC MCC AUC
AAC 63.85 0.28 0.68 7533 051 0.81 7146 0.43 0.76
AAP 68.30 0.37 0.73 78.3 057 0.85 7293 0.46 0.78
CTD 64.30 0.29 0.69 68.81 0.38 0.71 69.76 0.40 0.74
DPC 70.42 041 0.76 82.7 0.66 0.88 72.07 0.44 0.78
PCP 66.18 0.32 0.71 64.31 0.29 0.64 728 0.46 0.78

(ACC accuracyMCC Matthew’s correlation coefficienBUC area under curve).

(ii) Physico-chemical properties-based model. We developed models based on physico-
chemical properties (PCP) using 10 physico-chemical properties of BCEs aBdC&sn
These models were further optimized in order to improve the performance. Weedchie
maximum MCC of 0.32, 0.29 and 0.46 for IgG, IgE and IgA respectively (Table 1 and
Additional file 3: Table S2). Further, we developed models using features like
composition-transition and distribution (CTD) as input, which has been used in the past
for predicting BCEs [33] and achieved MCC of 0.29, 0.38 and 0.40 for IgG, IgE and IgA
respectively (Table 1 and Additional file 3: Table S2). The performance of botlaRCP
CTD-based models on threshold dependent, as well as on threshold independent
parameters were poorer than dipeptide-based models. In addition, we developed models
using amino acid pairs propensity (AAP) and achieved the performance more or less
similar to dipeptide-based model. AAP based model achieved maximum MCC of 0.37,
0.57 and 0.46 for IgG, IgE and IgA respectively (Table 1 and Additional file 3: Table S2).

SVM'"9" models developed on BalanceFix dataset

(i) Composition-based model. We built models on BalanceFix dataset using amino acid
composition as input feature and achieved MCC of 0.33, 0.64 and 0.39 for I1gG, IgE and
IgA respectively (Table 2 and Additional file 3: Table S4). Similarly, SVM nwde
developed with dipeptide composition profile achieved MCC of 0.44, 0.70 and 0.45 for
IgG, IgE and IgA respectively. The AUC values for the models were 0.77, 0.9 and 0.78
for 1gG, IgE and IgA respectively. Detailed performances of dipeptidedha®del at
different thresholds are summarized in supporting information (Additional filet8e Ta
S5).



Table 2 The performance of SVM models developed for predicting antibody speasf
BCEs on BalanceFix dataset using various features

Input pattern IgG epitope IgE epitope IgA epitope

ACC MCC AUC ACC MCC AUC ACC MCC AuUC
AAC 66.27 0.33 0.70 81.78 0.64 0.86 69.29 0.39 0.75
AAP 69.29 0.39 0.75 82.39 0.65 0.89 74.34 0.49 0.79
CTD 5741 0.15 0.61 63.99 0.28 0.70 63.3 0.27 0.67
DPC 71.73 0.44 0.77 8496 0.70 0.90 72.28 0.45 0.78
PCP 56.57 0.13 0.59 58.11 0.16 0.62 63.3 0.27 0.69
BIN 54.02 0.08 0.55 56.17 0.12 0.59 62.17 0.24 0.67

(ACC accuracyMCC Matthew’s correlation coefficienBUC Area under curve).

(i) Physico-chemical properties-based model. Further, SVM models were developed using
PCP which achieved MCC of 0.13, 0.16 and 0.27 for IgG, IgE and IgA respectively. The
maximum performance of CTD model on this data in term of MCC was 0.15, 0.28 and
0.27 for IgG, IgE and IgA respectively (Table 2 and Additional file 3: Table S4).
Furthermore, models on BalanceFix dataset using AAP achieved maximum MCC of
0.39, 0.65 and 0.49 for IgG, IgE and IgA respectively.

(ii) Binary profile-based model. Since BalanceFix dataset consists of fixed length epitopes,
therefore, we developed model using binary profile of epitopes as input features to
predict antibody-specific BCEs. The binary based models achieved maxim@roMC
0.08, 0.12, 0.24 for IgG, IgE and IgA respectively (Table 2 and Additional file 3: Table
S4).

In addition, we also developed SVM models for each class on iedlghasets.e. RealVar
and RealFix datasets. The dipeptide-based SVM models perfoesedrhong the rest of the
models. The performance of models developed on realistic datassismmarized in
supporting information (Additional file 3: Table S6 and Additional file 3: TableS7).

Models developed using WEKA

We developed models based on BayesNet, Complement NaiveBayes,BdNasge
NaiveBayes Multinomial, SMO, IBk (kNN), J48, and RandomForest using RVEb
predicting antibody-specific BCEs. After tuning different paramseteve found that out of
many algorithms of WEKA, three algorithms SMO, kNN and Random sEqgerformed
comparatively better as shown in supporting information (Additional3fildable S8 and
Additional file 3: TableS9). Balanced set of patterns for both birigBalanceVar) and fixed
(BalanceFix) length were used for all three classes and ¢ésdlussing five-fold cross
validation technique as shown in the supplementary information (Additibe&: Table S8
and Additional file 3: Table S9).

The best classifiers of WEKA achieved maximum accuracy 70.07%gfér [KNN: O,
window size: 0, algorithm: LinearNN search], 81.50% for IgE [SMO, lgatyel -C 250007 -

O 1.0, c: 1.0, epsilon: 1.0E-12] and 71.16% for IgA [Randomforest, numFeature: 15,
numTrees: 10, Seed: 1]. These results were comparable to SVM nroglsmented using
SVM"" where it achieved maximum accuracy of 70.42%, 82.70% and 72.07% for IgG, IgE
and IgA respectively.



Performance of model on independent dataset

In order to evaluate the performance of our models on independentwediest trained our
models on 80% of data by ten-fold cross validation and later the perice of the best
models were evaluated on remaining 20% independent data. We evalyegtetddi based
model on all the datasets for all classes of epitopes. The parioes of these models are
summarized in Table 3. On BalanceVar data, model (ten-fold eadisiation) developed on
training data achieved maximum MCC of 0.42, 0.61 and 0.39 while MCC of 0.37a1d63
0.49 were achieved on evaluation datasets of IgG, IgE and IgA classesctvely.
Similarly, for BalanceFix data, model performed reasonably amil achieved maximum
maximum MCC of 0.42, 0.70 and 0.46 on training data while MCC of 0.43, 0.62 and 0.33
were achieved on evaluation datasets of IgG, IgE and IgA classeectively. The
performance of every ten fold cross validation model on the evatusgit was comparable to
that of five fold cross validation model made on main data. Takeéhesié results together, it
can be speculated that our model performed consistently well, anddagtacy is not due to
over optimization.

Table 3The performance of dipeptide composition based SVM models, evaluated nigi
ten-fold cross validation on training data (806) and independent validation on
independent data (206) on BalanceEval (BalanceFix & BalanceVar) dataset

Dataset Mode Data size ACC MCC AUC

BalanceVar IgG Training 6063 70.88 0.42 0.76
Evaluation 1519 68.24 0.37 0.74

IgE Training 1873 80.53 0.61 0.87

Evaluation 468 81.49 0.63 0.88

IgA Training 322 69.60 0.39 0.75

Evaluation 80 74.69 0.49 0.79

BalanceFix IgG Training 4893 70.87 0.42 0.76
Evaluation 1223 71.67 0.43 0.78

IgE Training 1524 85.04 0.70 0.90

Evaluation 381 80.97 0.62 0.86

IgA Training 213 73 0.46 0.80

Evaluation 54 66.67 0.33 0.72

Implementation and utility of IgPred

We have developed a user-friendly web server ‘IgPred’ (Figurer predicting antibody-
specific BCEs. A number of useful tools have been integrated to dgRed their
descriptions is as follows:

Figure 4 Schematic representation of IgPred webserver.

(i) Epitopesin peptides: This tool allows users to predict antibody-specific epitopes in their
peptide sequences. User can select either variable length, or fixed lengtegeption
provided at server. In case of variable length peptides, the models were builtattevari
length data. Here, server allows users to submit multiple peptides in FASTAL fimr
predicting epitopes. In case of fixed length peptides, the models were developeztion fix



length data, so on server users may submit multiple psptideced length in FASTA ¢
plain format for predicting epitopes.

(i) Epitopesin proteins: This tool allows users to identify antigenic regions (BCES) in
protein sequences, which can induce particular class of Ab. There are two options for
users as described above. First option is mapping with variable length, and other is
mapping with fixed length window.

(iif) Mapping with experimental data: This tool allows users to map experimentally verified
class-specific BCEs on user’s antigen sequence.

(iv) MotifScan: This module is designed to scan Ab class-specific motifs in an antigen
sequence proded by the users. These motifs were derived from experimentally va
BCEs that induce IgG, IgE and IgA Abs using MEME/MAST software as meitione
method.

(v) Similarity search: This option allows users to search known (experimentally validated)
BCEs in their antigen sequence using Smith-Waterman similarity sdgochhan.

In the prediction tools, users can select an SVM threshold forldlse of antibody that is
going to be generated. We suggest that if high confidence in predgtieeded, user should
select high threshold value, but at the same time sensitivittheofprediction will be
compromised. The results can be downloaded immediately or caniserettby email. The
common gateway interface (CGI) script for IgPred was enitising PERL 5.03. IgPred is
freely available at http://crdd.osdd.net/raghava/igpred/ .

Discussion

In the past, several methods have been developed for predictingiB@g&santigen/protein
sequence from their primary structure [15,34-37]. To the best of auttrmwledge no
comprehensive method has been developed so far for predicting clags=-8ieEs, except
few methods developed for IgE inducing allergenic epitopes [17,38,39prékent study is
an attempt in the direction to understand differences between the tB@Enduce different
classes of antibodies like IgG, IgE and IgA. We hypothesized that ioduat different
classes of antibodies.€ IgG, IgE and IgA) could be determined by the sequence of an
epitope. Therefore, to understand this, we first extracted BCEsthae IgG, IgE and IgA
types of antibodies from the IEDB database, and then these seguwesreesystematically
analyzed. Amino acid and dipeptide composition analysis revealechthabmposition of
certain residues/dipeptides is higher in certain antibody{fspegitopes than the others. In
addition, few residues are preferred in a particular claggesting that these residues or
dipeptides may play an important role in class switching. Fameie, Pro and GIn are
significantly dominant in IgA epitopes. Though Pro is usually natedepred residue in any
of the regular secondary structures, this residue might be comghuatinduction of IgA.
Based on these observations, it is clear that the compositionqaerse (residue or
dipeptide) can be used to discriminate epitopes of different clagsefore, we developed
models using amino acid and dipeptide composition as input featurebofge # results
section, models based on dipeptide were able to classify the epitdgierent classes with
reasonably high accuracy. All models were evaluated using babkhtiid dependent and
independent parameters. In addition to SVM models, we also developed models using various
modules of WEKA package. It was observed that models based onietaSBO, kNN and
Random Forest perform better than other classifiers of WHK#as also observed that
overall SVM-based models implemented using $S¥Mperformed better than models
developed using WEKA as explained in results section.



We further developed SVM model using binary profiles of patterns@st ifeatures. In
addition, we also developed models using various other features likeCHOPand AAP,
but none of the methods achieved accuracy higher than dipeptide-based. nidoel
performance of dipeptide-based model were also evaluated Hgldecross validation and
performance was almost similar to five-fold. We evaluated thienpeance of ten-fold cross
validation models on independent datasets and achieved reasonableya@siraentioned
in the result section). Our results suggest that performancarahodels is not due to the
over optimization; thus our method will be useful and effective in real life.

In our study, we used one vs. rest approach for creating tatéismeans for developing
models for predicting IgA epitopes; we used IgA epitopes asiymmsiet and the rest of the
epitopes (IgE, 1gG and non-BCE) as negative set. However, we hausettone vs rest
approach for prediction, it means our predictions are not exclusidéciooe for a single
class and our models may predict a peptide inducing for more thanamseotlantibodies
based on prediction score. In a situation where a peptide has eapealsdwo models then
it can be assigned to both the classes if the score for betesleés more than the threshold.
The dimensions provided in IgPred webserver enable users to detenmipeténcy of any
antigen to induce systemic, allergic or mucosal Ab immune response beforehand.

Conclusion

In the present study, we have made an attempt to establishtiarrddetween an antigenic
amino acid sequence and its tendencies to generate system)¢ &ltgEgic (IgE) and
mucosal (IgA) type of Ab response. For the first timmesilico models have been developed
for predicting class-specific BCEs. We have implemented ounodstin the form of a web
server -IgPred. We anticipate that IgPred will be beneficidlesigning a better vaccine and
immunotherapy, with most appropriate effector function, and several athacal
applications.

Methods

Dataset creation

In this study, datasets were derived from B-cell assaysuofan and mouse, which were
extracted from Immune Epitope Database (IEDB) (http://ww\W.ed)/). Of these
sequences, B-cell assay positive epitopes were considered aqBSHEse examples) and
B-cell negative epitopes were considered as non-BCEs (negataraples). Since these
sequences are of variable length (from 4-100 amino acids), only non- red(unoigoe)
sequences having a length between 4 to 50 amino acids were takse.€pitepes were
divided into three classes on the basis of antibody heavy chainigig@nd IgA) reported in
the IEDB database. Finally, we obtained 11981, 2341, 403 and 22835 sequences for IgG, IgE,
IgA specific BCEs and non-BCEs respectively. Non-BCEs areegntdifferent from the
lgG, IgE and IgA specific BCEs and nowhere present in positivesefliner we treated it as
a separate class. From the above data, we have derived followisgtddta developing
various models. The approach for developing datasets (BCEs and noh-&@ESelecting
features has been adopted from the previous study by our group [35]. $tuthys authors
developed a method, which efficiently classify BCEs from non-BEtese, in the present
study, we wanted to take it to the next step to classify B@tesciass-specific BCEs. The
overview of dataset creation is summarized in Figure 5.



Figure 5 Overview of dataset creation.

(i)

(ii)

Realistic dataset with variable length (Real Var dataset): This dataset consists of total
14725 BCEsi(e., 11981 IgG-specific, 2341 IgE-specific, 403 IgA-specific BCEs) and
22835 non-BCEs of variable lengths (Table 4)

Table 4 Various datasets used for developing prediction models in the presentidy

Dataset type 1gG IgE I0A
Positive Negative Positive Negative Positive Negative
RealVar 11981 25579 2341 35219 403 37157
BalanceVar 7598 7598 2341 2341 403 403
RealFix 9660 22761 1905 30516 267 32154
BalanceFix 6116 6116 1905 1905 267 267

Balanced dataset with variable length (BalanceVar dataset): This dataset was created

from the above mentioned RealVar dataset. In this dataset, positive exanmgles we
balanced by taking equal number of negative examples from total negativedoFirs

avoid biases, 4942 negative examples were picked randomly from non-BCEs (22835),
which is equivalent to one third of all BCEs (lgG, IgE, and IgA). Subsequently, balanced
dataset of each class was developed taking equal number of negative exanuuegy

from total negatives (Table 4). Since machine learning technique need figehl le

pattern and also it is difficult to predict epitopes in an antigen using model trained on
variable length datasets as length is not fixed for scanning, we have developeter
datasets of fixed length. These datasets are derived from the above twtsdatase

(i) Realistic dataset with fixed length (Real Fix dataset): In order to utilize the full potential

of machine learning techniques, we fixed the length to 20 residues as most epitopes have
length up to 20 residues. This has been implemented using extension truncation t

as described previously [40,41]. After removing redundant epitopes, we got 9660, 1905,
267 and 20589 for IgG, IgE, IgA and non-BCEs respectively (Table 4).

(iv) Balanced dataset with fixed length epitopes (BalanceFix dataset): This dataset was

(v)

generated from RealFix dataset using the same process as describddratreating
BalanceVar dataset. It consists of 9660, 1905, and 267 BCEs for I1gG, IgE, and IgA
respectively and an equal number of negative examples for the respectvasclas
summarized in Table 4.

I ndependent dataset: In order to create an independent dataset, 20% sequences were
randomly picked from BalanceFix (for fixed length) and BalanceVar (foalbkr length

dataset and used as independent dataset. Model was trained on rest 80% sequgnces usin
ten-fold cross validation and then performance of the optimized model was validated on
independent dataset.

One-vs-rest approach for datasets

We developed models for predicting epitopes inducing different Abs. In twdéevelop
model for epitopes inducing a specific class of Aly.(IgA inducing epitopes), we used IgA
inducing epitopes as positive examples, and the rest of the epitopag belother classes
(e.g., IgE, IgG and non-BCE) as negative examples (Additional file 21rEig2). Similarly,
for developing model for I9gG inducing BCES, IgG-specific BCEsanmmsidered as positive
examples and the rest of the epitopes from other classes (IgkcspgA specific BCEs and
non-BCESs) were considered as negative examples (Additional file 2: Figure S2).



Amino acid composition

Amino acid composition is one of the simplest features, which heee bsed in the past to
encapsulate the global information of protein into a fixed lengtienpa[42,43]. Amino acid
composition of a peptide is proportional to frequency of each type diueesl a peptide. As
there are 20 types of residues, so there are 20 types of compfusiteach peptide. Thus, a
vector of 20 is used to represent an epitope as described in previous studies [44].

Dipeptide composition

Dipeptide composition is another important feature, which is usedrsfaran the variable

length of peptides to fixed length feature vectors. Dipeptide cotpmsinave been used in
earlier studies to classify various classes of peptides [44,4&pfide composition provides
information of the pair of residues in contrast to a single residdeprovides a fixed pattern
length of 400. We computed percent of occurrence of each type ofidepepid used this
information for developing machine learning models. Following fornmas been used for
computing dipeptide composition of each epitope

Total number of Dip(i)
Total number of all possibleDips

Percentage of Dip(i) = x100 (1)

where Digi) is a dipeptide out of 400 dipeptides.

To analyse the differences between dipeptide composition amond¢psdes of epitopes
(IgG-, IgE-, IgA-inducing and Non-BCE), we performed significanceé (@felch’s t-test).

For example, we first calculated average of dipeptide compos{@@dsdipeptides) for both
lgG(+) data and IgG(-) data. Next, we calculated the differehcgeans in both the datasets
for each of the 400 dipeptides for IgG-, IgE-, IgA-inducing BCEs and-B®as
respectively. We also computed whether the difference in the mehpeptide composition

is significant or not using-test. Several dipeptides show a significant difference in
composition between positive and negative dataset of each class (Additional file 1)

Binary profile of patterns

We used binary profiles of patterns for fixed length datasetsemb@ch amino acid was
presented by a vector of dimension 20 as described previously [44]. tBedength of
epitopes was 20, a pattern of window length 20 was represented hpmaofetimension (20
x 20). In the past, binary profile has been used for developing prediction models [44-47].

Physico-chemical properties

It is well known that function of a peptide is governed by its pynsaguence and their
physico-chemical properties. Therefore, in the present study, weesktected ten commonly
used physico-chemical properties. These properties include hydroppobidiky side chain,
net-hydrogen, stearic hindrance, amphipathicity, hydrophilicity, chatgea]ye,etc. [48,49].



MEME/MAST

MEME/MAST module has been used previously for discovering novel miotifgarious

classes of proteins and peptides [44]. We have adopted the simakaggtin the present
study for discovering various motifs in epitopes using MEME/MASTdul@. This module
comprises of two programs: one is MEME, which is used to discowéifs, and other is
MAST, used for searching motifs [50,51]. In the present study, we bhaed MEME for

discovering motifs in IgG, IgE and IgA inducing epitopes and subsequenty, discovered
motifs were used further for identifying epitopes using MAST.

Composition-transition-distribution (CTD)

CTD has been used in several machine learning algorithms [33] tofgetd length vector
from variable length data. Each peptide sequence was mapped tritgalsfined by three
symbols. These symbols were resulted from grouping of all amide extd three groups, on
the basis of certain physico-chemical properties. For every physicoicdl property, we got
a string of 1, 2 and 3 symbols; three feature given by compositiee, fibsature given by the
percent frequency of i followed by j or j followed by i (tramm) and five features per
symbol. Thus total 15 features representing the fractions of the eetjuence where the
first, 25, 50, 75, and 100% of the candidate symbol are contained in string (distribution).

Amino acid pairs propensity scale

It has been reported that some amino acid pairs found more frequmeBBES than in non-
BCEs. Keeping this in mind, we developed an AAP propensity scakpasged previously
[33,34]. The frequencies were calculated from positive and negativeselateences [52].
AAP features can be viewed as dipeptide composition featuresitegigy the amino acid
propensity of each dipeptide. The final vector size in AAP is 400 .

Software for extraction of features and implementiig machine-learning
techniques

The calculations for different features have been carried out ishmuse PERL scripts and
R package (2.10.1) scripts. Plots were made using SigmaPlot 10.0.ed/eSUd_Light
software (http://svmlight.joachims.org/) for developing SVM basediets. SVM is freely
available for academic use and has been used in number of resqeeh[@8,53,54]. We
also used WEKA 3.2 package (http://www.cs.waikato.ac.nz/ml/WEK®AHevelop various
types of models. We used nine algorithms of WEKA package namelesBeat,
Complement NaiveBayes, NaiveBayes, NaiveBayes Multinomial, SNBR, J48, and
RandomForest [55].

Evaluating the performance of models

In the present study, we used five-fold cross validation techmigeraluate the performance
of our models developed for predicting antibody-specific epitopes. Iteithgique, one fifth
of total data is used for testing and remaining data is usetlaioing the model and this
process is repeated till all instances are evaluated. Synilee also run ten-fold cross
validation, which was preceded by evaluation on independent datasetlidatevahe
performance of the model. In addition, in order to evaluate the pericema models, we



included both threshold dependent and threshold independent parameters. In case of threshold
dependent parameters, we used standard parameters like ser{8ew}y specificity (Spe),

Overall accuracy (Acc) and Matthews’s correlation coeffici@dCC) using following
eqguations.

TP

s=——x100 2)
TP +FN
™
ec=——x100 3
PN P ©)
cc=— PIN__ 00 (4)
TP+FP+TN+FN

_ (TP)(TN) - (FP)(FN)
JITP+FP][TP+FN][ TN + FA[ TN + FN

(5)

[TP = true positive; FN = false negative; TN = tmegative; FP = false positive; Sens =
Sensitivity; Spec = Specificity; Acc = Accuracy]

To evaluate the performance of models using thtdshdependent parameters, AUC (Area
under curve curve) have been calculated with the ¢fePERF software.

Response and revision of the manuscript in lighhefreviewer comments:

Reviewers’ comments on the original manuscript

We are grateful to the reviewers’ for their usefobughts and suggestions. We have
incorporated all the suggestions of the reviewersur manuscript. Here, we are addressing
all comments of reviewer’s point-by-point.

Reviewer number 1: Dr. M Michael Gromiha

In this work, authors have developed a method f&digting different types of B-cell
epitopes. They have utilized several features sischmino acid and dipeptide compositions,
physicochemical properties and binary profiles. Wethod showed a correlation coefficient
in the range of 0.44 to 0.70 to various types dfopes. Further, a web server has been
developed for application purposes.

Reviewer comments:The composition analysis shows the preferencerofifPIgA. Pro is
usually not a preferred residue in any of the raguecondary structures. The higher
occurrence of Pro may be discussed. Further, thends#mce of Cys in IgE may be
commented.

Authors’ response: It has been shown in previous studies [56,57] thast of residues in
BCEs fall in non-regular (coil or tight-turns) seciary structure. In revised paper, we have
discussed the preference of Pro and Cys in IgA-lgBdnducing epitopes respectively.

Reviewer comments:The residue pair preference showed the dominah&ocowith other
residues only in IgG and IgA and not in IgE. Thiaynbe discussed.



Authors’ response: This is the first study, where types of residuesfgrred in the different
classes of BCEs have been calculated. We have ea (fiological significance of
observation) why Pro with other residues (paimnisre abundant in IgG- and IgA- inducing
epitopes and not in IgE-inducing epitopes. Thisnsinteresting point to be studied in the
future for understanding the above observation.

Reviewer comments:lt has been shown that IgE can be predicted wghdr accuracy than
other epitopes. The reason may be explained.

Authors’ response: It has been observed that IgE-inducing epitopesnasre conserved in
comparison to other classes of epitopes, whichdcbealresponsible for higher accuracy.

Reviewer commentsThe expansions for the parameters used in SMO mayven.

Authors’ response: As suggested by the reviewer, in revised versioth@® manuscript, we
have described SMO parameters in detail.

Reviewer commentsit is necessary to give the procedure used to verttee redundancy.

Authors’ response: In revised manuscript, the procedure to remove ré@undant or
duplicate peptides has been described.

Reviewer comments:Quality of written English: Acceptable

Reviewer number 2: Dr Christopher Langmead (nominaéd by Dr Robert
Murphy)

The manuscript presents an SVM-based method fatigineg antibody-specific epitopes.
Three classes were considered: IgA, IgE, IgG. Featincluded AA composition, dipeptide
composition, and physio-chemical properties. Trajniata were obtained from the IEDB,
and machine-learning methods were performed usthgreSVM 9" or WEKA. A website
for performing a variety of tasks associated witliape prediction is also reported.

The study has some flaws that need to be addressed.

Reviewer comments:The results obtained with SV are the result of tuning parameters,
whereas the results obtained for the strawman raaelthe result of using WEKA'’s default
parameters. To be fair, the authors must do pasrsearches for these.

Authors’ response: We agree with the reviewer, in our revised maripsave have reported
the performances of strawman models after paranogtimization (see Additional file 3:
Table S1).

Reviewer comments:Did the authors try a string kernel for the SYA&Wi experiments? It
would seem appropriate, given the nature of tha.dat

Authors’ Response: In the present study, we have tried only threenddsr of SVM™
namely Linear, Polynomial and Radial basis. It asgble that string kernel may perform
better than above kernels, but unfortunately, ousug does not have expertise in



optimization of string kernel parameters. In adutti previous studies have indicated that
radial basis is an efficient kernel for discrimingtvarious types of peptide/epitopes.

Reviewer comments:The authors need to explain what they do in thentwf a tie in their
one-vs-rest approach to multi-class classification.

Authors’ response: In this study, we used one verses rest approackréating datasets
only, and not for predicting epitopes, for examgte,develop prediction model for IgA-
inducing epitopes, we created a dataset contaimg#ginducing epitopes as positive
examples and remaining epitopes (IgE-, IgG-indu@pgopes and non-BCEs) as negative
examples. We computed performance of models basédeothreshold, for example, in IgA
model if a peptide having SVM score above the tlolesthen it is assigned as IgA-inducing
epitope. We have not used exclusive predictionaf@ingle class and our predictors may
predict a single peptide inducing more than onssctd antibodies. Thus, it does not matter if
a peptide has equal score for two models, and yt Imeapredicted in two classes if the SVM
score is more than the threshold. In our reviseduseript, we have clarified this point.

Reviewer comments:Since the matrics for their method (MCC) are appi#yevorse than
published methods for (antibody-neutral) epitopedption, the authors should evaluate a
two-stage classification process whereby an anytmalitral classification is performed, and
then the positive results are passed to their ndetbis would simplify the learning task
because their method would not have to learn tiindisish non-BCEs from BCEs.

Authors’ response: The aim of this study is to predict antibody sfiedBCEs instead of
BCEs. For the first time, we have developed mofteigredicting antibody class specific-
BCEs that may induce three types of antibodies ,(Ig& and 1gG). Thus, it is not possible to
compare this method with the previous methods deeanethods have been developed for
predicting BCEs only.

Reviewer comments: The manuscript also has some flaws that need t@duessed.
Primarily, they should cite and discuss other SVa4dd methods for epitope prediction.
Additionally, it is not clear whether the authorsderstand that SMO is, in fact, an algorithm
for learning SVMs. It seems strange to simply listGdamong the non-SVM algorithms.

Typos: There are a number of typos that can betifaeh by using a spell-checker. The
authors meant to say that there are five primastypes at the end of the first paragraph of
the Background section, not six (note: they colydist the five classes).

Authors’ response: As suggested by reviewer, we have cited other 33&sked methods
published earlier for epitope prediction. We hals® &dited the manuscript as per reviewer’'s
suggestion. Since there are different versionsupip8rt Vector Machines (like SV and
SMO), we tried one from SVI#" and other from WEKA package (SMO). As the reviewer
has advised, we have placed SMO in SVM algorithms fnon-SVM algorithms.

Reviewer comments:Quality of written English: Needs some languageexiions before
being published

Authors’ Response: We have tried our best to improve the quality nglesh in revised
version of the manuscript.



Reviewer number: 3
Report form:
OK

Reviewer comments:Quality of written English: Needs some languageexiions before
being published

Referee 3: Dr Lina Ma (nominated by Dr Zhang Zhang)

This manuscript presented a method to predict Bepaopes that can induce a specific class
of antibody and attempted to understand the reldtistween primary sequence of epitopes
and the class of antibodies. My comments are liagefbllows.

Reviewer comments: It is noticed that one paper published by the ansth entitled
“Improved Method for Linear B-Cell Epitope PredictioUsing Antigen’s Primary
Sequence”, describes the method of B-cell epitapdigtion”. Is the method presented here
similar with that in the published one? As the aushused non-BCEs as a negative control in
both papers, | wonder what is the correlation betwthis manuscript and the published one
and it might be better to describe it clearly @rcdiss any issue caused.

Authors’ response: As indicated by reviewer, recently our group habligshed a paper [35]
describing a method developed for predicting lirearell epitopes (in revised version of this
paper, we have cited and discussed our recent )pdpdhe past, other methods have also
been developed for predicting B-cell epitopes (idetg our recent paper [35]). In the present
paper, for the first time, we have developed a weflor predicting epitopes that can induce
specific class of antibodies. In the revised manpscwe have clarified the difference
between IgPred and previous methods.

Reviewer commentsit is highly recommended that the manuscript dbedheir results in a
more clarified and detailed manner.

a) In Figure 1, it is obvious that Pro and GIn areratant in IgA inducing epitopes, but | do
not think that Cys and Glu are dominated in IgEuidg epitopes. In Figure 2, IgA
inducing epitopes contain more LP, LQ, PF, PQ, ®F, QL and QQ dipeptides i the
IgG inducing epitopes and IgE epitopes do not terghow a significant difference in any
dipeptide compositions among the three kinds abeps.

b) Some statistical methods should be used to contpardifference between epitopes, and
it is better to list results with significant difences.

c) Error bars should be added in the histogram ofrégto show deviations.

Authors’ response: We agree with the reviewer in the points (a, b endnd after getting
valuable comments from the reviewer, we performezcdWst-test for each class of epitopes
(IgG, IgE, IgA, and non-BCE). As an example, westficalculated average of dipeptide
compositions (400 dipeptides) for both 1gG(+) datal IgG(-) data. Further with the help of
t-test, we calculated the difference of means of libé datasets for each of 400 dipeptides.
Looking at the large number of dipeptides (400), removed Figure 2 (showing dipeptide
composition as bar graph) and provided the dipeptiomposition of all the three classes



with their negatives along with p-value in separatigitional file 1. With such analysis, it
can be observed (in the Supplementary excel skiegt)significant dipeptides such as AS,
GP, WK, YR, etc. are found to be dominant in 1gG-inducing epitgd€sLA, NA, NE, etc.
are frequent in IgE-inducing epitopes; and ED, PP, PQ, PY, QPetc. are prevailing in
IgA-inducing epitopes. We have also discussed thbservations in the revised manuscript.

As per reviewer’s suggestion, we performed Welthest on dipeptide composition data to
look at the significant difference between positwel negative data of each class.

We have also added error bars to the amino acidpasition bar graph as per reviewer’'s
recommendation.

d) In Figure 1, non-BCEs were used as a negative aotitis better that negative control is
also used in Figure 2. Similar problems also arisections of “Residue preference”,
“Length of epitopes”, “Physico-chemical propertyabysis”, “Motifs analysis”. It is better
that negative control (non-BCESs) should be usedistently with Figure 1.

Authors’ response: As suggested by the reviewer, we have added AAQooFBCE in
Figure 1. We replaced Figure 2 with excel sheetvaigp DPC of 400 dipeptides (Additional
file 1).

e) The results of ACC, AUC, and MCC are listed in tablehat about sensitivity and
specificity

Authors’ response: Since there were about six features for each eftlinee classes of

epitopes, we did not include sensitivity and speityf in the result tables. After getting

suggestion of the reviewer, we created additiombles (Table S2 and S4) containing
sensitivity and specificity and incorporated aspementary information (Additional file 3:

Table S2 and Additional file 3: Table S4).

f) What does AAP mean? What is the difference betwadn and DPC?

Authors’ response: AAP (Amino acid propensity) is a feature, whichdisrived from DPC
of the datasets. This feature has been exploitegr@vious B-cell epitope prediction
algorithms [33,40,41,43]. This represents the DIP& rotein/amino acid sequence weighted
by the amino acid propensity of each dipeptide imarix made by both positive and
negative data. We have edited the manuscript byritbasg it in detail.

Reviewer comments: Discussion Sectiomt the end of the first paragraph, it is concluded
that SVM performed better than WEKA. This is an impot conclusion of this paper, which
should be explained in detail.

Authors’ response: As we can observe in the supplementary tablem88&8, algorithms of
WEKA (IBk, Random Forest and SMO) could perform mewbly well with DPC as input
feature. At the same time, using SV with DPC as input feature, the performances of
different models were significantly better thandbof WEKA as a whole. As suggested by
the reviewer, we have discussed the performanc&/bf and WEKA modules in detail in
the discussion section.



Reviewer comments:At the end of paragraph 2, please explain “redslenaccuracy” in
detail?

Authors’ response: As suggested by the reviewer, we have explainedaticuracies of our
models on independent dataset in detail. For BaeMac data, model (ten-fold cross
validation) developed on training data achieved imar MCC of 0.42, 0.61 and 0.39 while
MCC of 0.37, 0.63 and 0.49 were achieved on evanatiatasets of 1gG, IgE and IgA
classes respectively. Similarly, for BalanceFixaganodel performed well and achieved
maximum MCC of 0.42, 0.70 and 0.46 on training dakdle MCC of 0.43, 0.62 and 0.33
were achieved on evaluation datasets of IgG, IgEIgA classes respectively. We have also
discussed this issue in the revised manuscripeagsepiewer’s suggestion.

Reviewer comments:IgA inducing epitopes are quite different from IgE IgG inducing
epitopes in AAC and AAP comparison. However, SVM eledor predicting IgA inducing
epitopes do not seem to perform better than thatpfedicting IgE and 1gG inducing
epitopes. This is really confusing for me, or ighti be better to provide explanations for this
result.

Authors’ response: We agree with the reviewer that IgA epitopes angeqdifferent. We
examined the performance of prediction of IgA indgcepitopes, as well as the reason for
the poor performance of these models. It couldueetd the fact that IgA inducing epitopes
are very limited in comparison to non-IgA induciegitopes. It is a well-known fact that
machine learning techniques, particularly SVM-baseatiels perform poor especially when
positive and negative dataset is unbalanced. We hsntioned these points in the revised
manuscript.

Reviewer comments:As there have been methods for predicting IgE ¢nuy epitopes,
what is the difference between previous methodslaadnodels described in the manuscript?

Authors’ response: We agree with the reviewer that there are methdelgeloped for
prediction of IgE inducing epitopes (one is front own group [17]). The current study can
be considered as an extension of the previousestutihis study offers researcher to compare
the potential of an epitope to induce systemic tyjs), mucosal type (IgA) and
inflammatory type (IgE) of antibody immune respanBleus in contrast to the predictors of
IgE inducing epitopes, our web server is more cam@nsive with reference to antibody
immune response.

Reviewers’ comments on the revised manuscript

Referee 3: Dr Lina Ma (nominated by Dr Zhang Zhang)

Reviewer comments:The authors have answered all the questions styjouhile there are
still some mistakes in the revised version. It estér that the authors check the manuscript
carefully before submission.

Section “Composition analysis”, paragraph 1, lingh@ word “Glu” should be GIn. Section
“Discussion”, paragraph 1, lines 19-20, this ser#eseems incomplete.

The authors say that they have mentioned thesdspaithe revised manuscript in answering
my third question of Section “Discussion”, whilditl not find where they have mentioned.



Authors’ response: We are thankful to the reviewer for appreciatingr @fforts. As
suggested by the reviewer, we have edited the meptsand incorporated all the
suggestions. The performance of WEKA has been siésriiin result and discussion section
after getting the comments of reviewer.
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Background

In past numerous methods have been developed for predicting linear as well as conformational
B-cell epitopes in an antigen. These methods predict whether a region/peptide is antigenic (B-cell
epitope). It is important for users to know what type antibodies will be induced by these B-cell

epitopes. So far limited efforts have been made in this direction, there are methods to predict 1]
allergenic regions (IgE specific B-cell epitopes) that can induce IgE type of antibodies. In order to

facilitate scientific community we had made an effort to develop method for predicting antibody )

specific B-cell epitopes in an antigen. 153
Prediction Algorithm Q)

We analyzed 11981 IgG, 2341 IgE and 403 IgA specific B-cell epitopes, obtained from IEDB. It

was observed that B-cell epitopes inducing each class of antibodies have unique features. We

developed models using SVM for predicting B-cell epitopes that can induce IgG, IgA and IgE

types of antibodies.

IgPred Web Server

Based on our study, we developed a web server IgPred for predicting antibody (IgG, IgE and IgA) specific B-cell epitopes. This server has

following three major modules for providing service to community.

MotifScan: This module is designed to scan antibody specific motifs in an antigen sequence provided by user. These motifs were

derived from experimentally validated B-cell epitopes that induce 19G, IgE and IgA antibodies, using MEME/MAST software.

Similarity Search: This option of IgPred allows users to search known (experimentally tested) B-cell epitopes in their antigen

sequence. Epitope are searched in antigen using Smith-Waterman similarity search algorithm.

Prediction in Peptides: This option has two options for predicting antibody-specific epitopes for variable and fixed length peptides. In

case of Variable length peptides, server allows users to submit multiple peptides in Fasta format for predicting epitopes. In case of

Fixed length peptides, server allows users to submit multiple peptides of fixed length in Fasta format for predicting epitopes.

Prediction in Proteins: This option allows users to map predicted and actual epitopes in their query protein. First option mapping with

Variable length window, allows users to map predicted epitopes on antigen sequence of a user. Second option mapping with Fixed

me{ndow, allows users to map predicted epitopes on antigen sequence of a user. Third option mapping with experimental data ,
sérs to map experimentally verified B-cell epitopes on User's antigen sequence.

.
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