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Abstract 

Background 

In the past, numerous methods have been developed for predicting antigenic regions or B-cell 
epitopes that can induce B-cell response. To the best of authors’ knowledge, no method has 
been developed for predicting B-cell epitopes that can induce a specific class of antibody 
(e.g., IgA, IgG) except allergenic epitopes (IgE). In this study, an attempt has been made to 
understand the relation between primary sequence of epitopes and the class of antibodies 
generated. 

Results 

The dataset used in this study has been derived from Immune Epitope Database and consists 
of 14725 B-cell epitopes that include 11981 IgG, 2341 IgE, 403 IgA specific epitopes and 
22835 non-B-cell epitopes. In order to understand the preference of residues or motifs in 
these epitopes, we computed and compared amino acid and dipeptide composition of IgG, 
IgE, IgA inducing epitopes and non-B-cell epitopes. Differences in composition profiles of 
different classes of epitopes were observed, and few residues were found to be preferred. 
Based on these observations, we developed models for predicting antibody class-specific B-
cell epitopes using various features like amino acid composition, dipeptide composition, and 
binary profiles. Among these, dipeptide composition-based support vector machine model 
achieved maximum Matthews correlation coefficient of 0.44, 0.70 and 0.45 for IgG, IgE and 
IgA specific epitopes respectively. All models were developed on experimentally validated 
non-redundant dataset and evaluated using five-fold cross validation. In addition, the 
performance of dipeptide-based model was also evaluated on independent dataset. 



Conclusion 

Present study utilizes the amino acid sequence information for predicting the tendencies of 
antigens to induce different classes of antibodies. For the first time, in silico models have 
been developed for predicting B-cell epitopes, which can induce specific class of antibodies. 
A web service called IgPred has been developed to serve the scientific community. This 
server will be useful for researchers working in the field of subunit/epitope/peptide-based 
vaccines and immunotherapy (http://crdd.osdd.net/raghava/igpred/). 

Open peer review 

This article was reviewed by Dr. M Michael Gromiha, Dr Christopher Langmead (nominated 
by Dr Robert Murphy) and Dr Lina Ma (nominated by Dr Zhang Zhang). 
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Background 

Innate and adaptive immune responses are the two main arms of host immune system to 
combat invading pathogens. The innate immunity, also known as first line defense, is non-
specific and responsible for the immediate action against infection. On the other hand, 
adaptive immunity is a highly specialized type of defense system, where the immune system 
first recognizes pathogen and then develops pathogen-specific defense mechanisms. In 
addition, adaptive immunity also generates memory cells that can handle pathogen effectively 
and rapidly if the system is attacked later by the same pathogen. The adaptive arm of 
immunity can be divided broadly into two categories; humoral and cell-mediated, responsible 
for activating B-cells and T-cells respectively. 

Vaccination is an artificial procedure for sensitizing immune response or generating memory 
cells against a desired pathogen. Over the years, subunit vaccine design has become an 
integral part of vaccine design in which immunogenic region of protein is used instead of 
complete pathogen or antigen [1]. Antibodies (Abs) are one of the important components of 
humoral immunity where B-cells recognize antigenic regions or B-cell epitopes (BCEs) and 
generate antigen specific Abs. These Abs perform various functions such as phagocytosis [2], 
cell-mediated cytotoxicity [3], neutralization, compliment activation [4] and mast cell binding 
[5]. Broadly these Abs can be categorized in five classes or isolates i.e., IgA, IgD, IgE, IgG, 
and IgM. 

It has been observed in the past that particular pathogen/antigen induce defined class or 
subclass of Abs, for example, infections like schistosomiasis and filariasis induce a mixed 
response of IgE and IgG [6-8]. In case of protozoan like Plasmodium falciparum, Ab 
response of merozoite surface proteins constitutes mainly IgG1 and IgG3 subclasses [9,10]. 
On the other hand, viruses like rotavirus, HIV and influenza virus, are well known for 
inducing IgA type of response [11]. In case of IgE inducing antigens (allergens), the studies 
showed that the allergens have some features that make them allergenic [12]. These facts 
together suggest that there are desired effector functions of Abs, which are needed to 



encounter various types of pathogens. Thus, it is important to understand why the immune 
system produces different classes of antibodies against different antigens. This understanding 
will help an experimental biologist to design a better vaccine for the induction of systemic or 
mucosal immunity as well as immunotherapy. In the past, numerous databases and methods 
have been developed for maintaining and predicting BCEs in an antigen [13-16]. Till date, 
limited efforts have been made to develop the method for predicting allergens or BCEs that 
can induce IgE type of antibodies [17,18]. To the best of authors’ knowledge, no 
comprehensive attempts have been made for predicting BCEs responsible for inducing 
specific class of Abs or discrimination of epitopes that induce different class of Abs. 

In this paper, we have made an attempt to understand the relation between amino acid 
sequence of epitopes and type of Abs they will induce. First we have collected IgG, IgE and 
IgA specific BCEs from Immune Epitope Database (IEDB). Subsequently, these three classes 
of epitopes were analyzed to understand which residues or group of residues are preferred 
among these sequences. Based on comparative analysis, we developed prediction models 
using various features like amino acid composition, dipeptide composition and binary 
profiles. We also developed a user-friendly platform for the scientific community that allows 
users to predict IgG, IgE and IgA specific BCEs. 

Results 

Analysis 

Composition analysis 

In order to ascertain whether certain types of residues are dominated in different classes of 
BCEs, the percent average amino acid composition of IgG, IgE and IgA specific BCEs and 
non-B-cell epitopes (non-BCEs) was calculated and compared (Figure 1). The analysis 
revealed that there are differences in the percent average amino acid composition profiles of 
four classes (IgG, IgE, IgA, and non-BCEs) of epitopes. As shown in Figure 1, certain types 
of residues are abundant in each class, for instance Pro and Gln are abundant in IgA inducing 
epitopes while Cys and Glu are found to be dominated in IgE inducing epitopes. These 
observations are in accordance to several previous reports, where researchers have shown that 
there is a propensity of Cys residues in IgE inducing epitopes, and they form stable 
conformational epitopes through disulphide bonds [19-25]. It has also been observed in the 
past that IgA binding antigenic regions are Pro/Gly rich [26,27]. 

Figure 1 Comparison of average amino acid composition of different class of epitopes. 

Dipeptide composition provides more information than amino acid composition and has been 
used in the past for developing various classification models [28-30]. We have also computed 
and compared average dipeptide composition for each class of epitopes (IgG, IgE, IgA and 
non-BCE). It was observed that each class of epitopes has certain types of dipeptides having 
significantly higher composition (Welch’s t-test) than other class of epitopes. Dipeptides AS, 
GP, WK, YR, etc. are prevailing in IgG; IQ LA, NA, NE, etc. are frequent in IgE, and ED, 
FP, PF, PQ, PY, QP, etc. are predominant in IgA class of epitopes (Additional file 1). 



Residue preference 

In order to understand the preference of residues at different positions in epitopes, we 
analyzed two sample logos [31] of each class (Figure 2). As shown in Figure 2, certain 
residues are preferred at specific positions in each class. For example, in IgG inducing 
epitopes, Pro, Gly and Met are preferred at the first position and Pro and Arg are preferred at 
second position. Overall, Pro is found to be preferred at almost every position. In IgE 
inducing epitopes, Gln, Glu and Cys are found to be preferred at various positions. In IgA 
inducing epitopes, an exclusive preference of Gln and Pro is observed (Figure 2). 

Figure 2 Two sample logos for each class of epitopes where epitopes of a class is taken 
positive and the rest of peptides as negative examples. 

Length of epitopes 

In order to understand whether the length of epitopes plays any role in inducing specific class 
of antibodies, we examined the length of different class of epitopes. As shown in Figure 3, 
most of the epitopes are between 4 and 20 residues in length, only few epitopes having length 
more than 40 residues. Analysis revealed that more than 55% IgA specific epitopes are less 
than 10 residues in length while more than 45% IgE specific epitopes are between 11 and 15 
residues in length. IgA inducing epitopes have length between 4–10 residues. 

Figure 3 Lengthwise distributions of class-specific epitopes. 

Physico-chemical property analysis 

We computed and compared the physico-chemical properties of various epitopes to 
understand their correlation with antibody-class specificity. We did not find any significant 
differences in physico-chemical properties between the classes of epitopes (Additional file 2: 
Figure S1), except polar, aliphatic and positively charged residues, which showed differences 
in their composition both in IgA and IgE classes. In the past, few attempts have been made to 
differentiate BCEs from non-BCEs based on physico-chemical properties and shown similar 
observations [32]. 

Motifs analysis 

Since motif-based distinction of IgA epitopes has been reported in the past [11], we extracted 
motifs from other classes (IgG and IgE) considering the fact that few motifs might be present 
in these classes, as well. We performed MEME (see method section) studies for the discovery 
of motifs in all classes and extracted 20 motifs at default parameters of MEME (Additional 
file 3: Table S1). We have implemented this motif information at our server where user can 
scan their epitopes for the presence of specific motifs. 

Models for predicting antibody-specific BCEs 

In this study, we have developed numerous models for predicting IgG, IgE, and IgA specific 
BCEs. We built models for each class on all the datasets. The performance of models was 
optimized, for example, in case of SVM; parameters were tuned for all three types of kernels 
linear, polynomial and radial bias. 



SVM light models developed on BalanceVar dataset 

(i) Composition-based model. Since significant differences were observed in amino acid and 
dipeptide composition of each class of epitopes, first we have developed SVM models 
using amino acid composition as input feature and achieved maximum MCC values 0.28, 
0.51 and 0.43 for IgG, IgE and IgA respectively. The performances of amino acid 
composition-based models are summarized in Table 1 and Additional file 3: Table S2. 
Next, SVM models were developed based on dipeptide composition of epitopes. 
Dipeptide-based models performed better than the amino acid composition-based model 
and achieved maximum MCC of 0.41, 0.66 and 0.44 for IgG, IgE and IgA respectively 
(Table 1 and Additional file 3: Table S2). Detailed performances of dipeptide-based 
model at different thresholds are summarized in supporting information (Additional file 3: 
Table S3). 

Table 1 The performance of SVM models developed for predicting antibody specific 
BCEs on BalanceVar dataset using various features 

Input pattern  IgG epitope IgE epitope IgA epitope 
ACC MCC  AUC ACC MCC  AUC ACC MCC  AUC 

AAC  63.85 0.28 0.68 75.33 0.51 0.81 71.46 0.43 0.76 
AAP 68.30 0.37 0.73 78.3 0.57 0.85 72.93 0.46 0.78 
CTD 64.30 0.29 0.69 68.81 0.38 0.71 69.76 0.40 0.74 
DPC 70.42 0.41 0.76 82.7 0.66 0.88 72.07 0.44 0.78 
PCP 66.18 0.32 0.71 64.31 0.29 0.64 72.8 0.46 0.78 

(ACC accuracy, MCC Matthew’s correlation coefficient, AUC area under curve). 
(ii)  Physico-chemical properties-based model. We developed models based on physico-

chemical properties (PCP) using 10 physico-chemical properties of BCEs and non-BCEs. 
These models were further optimized in order to improve the performance. We achieved 
maximum MCC of 0.32, 0.29 and 0.46 for IgG, IgE and IgA respectively (Table 1 and 
Additional file 3: Table S2). Further, we developed models using features like 
composition-transition and distribution (CTD) as input, which has been used in the past 
for predicting BCEs [33] and achieved MCC of 0.29, 0.38 and 0.40 for IgG, IgE and IgA 
respectively (Table 1 and Additional file 3: Table S2). The performance of both PCP and 
CTD-based models on threshold dependent, as well as on threshold independent 
parameters were poorer than dipeptide-based models. In addition, we developed models 
using amino acid pairs propensity (AAP) and achieved the performance more or less 
similar to dipeptide-based model. AAP based model achieved maximum MCC of 0.37, 
0.57 and 0.46 for IgG, IgE and IgA respectively (Table 1 and Additional file 3: Table S2). 

SVM light models developed on BalanceFix dataset 

(i) Composition-based model. We built models on BalanceFix dataset using amino acid 
composition as input feature and achieved MCC of 0.33, 0.64 and 0.39 for IgG, IgE and 
IgA respectively (Table 2 and Additional file 3: Table S4). Similarly, SVM models 
developed with dipeptide composition profile achieved MCC of 0.44, 0.70 and 0.45 for 
IgG, IgE and IgA respectively. The AUC values for the models were 0.77, 0.9 and 0.78 
for IgG, IgE and IgA respectively. Detailed performances of dipeptide-based model at 
different thresholds are summarized in supporting information (Additional file 3: Table 
S5). 



Table 2 The performance of SVM models developed for predicting antibody specific 
BCEs on BalanceFix dataset using various features 

Input pattern  IgG epitope IgE epitope IgA epitope 
ACC MCC  AUC ACC MCC  AUC ACC MCC  AUC 

AAC  66.27 0.33 0.70 81.78 0.64 0.86 69.29 0.39 0.75 
AAP 69.29 0.39 0.75 82.39 0.65 0.89 74.34 0.49 0.79 
CTD 57.41 0.15 0.61 63.99 0.28 0.70 63.3 0.27 0.67 
DPC 71.73 0.44 0.77 84.96 0.70 0.90 72.28 0.45 0.78 
PCP 56.57 0.13 0.59 58.11 0.16 0.62 63.3 0.27 0.69 
BIN  54.02 0.08 0.55 56.17 0.12 0.59 62.17 0.24 0.67 

(ACC accuracy, MCC Matthew’s correlation coefficient, AUC Area under curve). 
(ii)  Physico-chemical properties-based model. Further, SVM models were developed using 

PCP which achieved MCC of 0.13, 0.16 and 0.27 for IgG, IgE and IgA respectively. The 
maximum performance of CTD model on this data in term of MCC was 0.15, 0.28 and 
0.27 for IgG, IgE and IgA respectively (Table 2 and Additional file 3: Table S4). 
Furthermore, models on BalanceFix dataset using AAP achieved maximum MCC of 
0.39, 0.65 and 0.49 for IgG, IgE and IgA respectively. 

(iii)  Binary profile-based model. Since BalanceFix dataset consists of fixed length epitopes, 
therefore, we developed model using binary profile of epitopes as input features to 
predict antibody-specific BCEs. The binary based models achieved maximum MCC of 
0.08, 0.12, 0.24 for IgG, IgE and IgA respectively (Table 2 and Additional file 3: Table 
S4). 

In addition, we also developed SVM models for each class on realistic datasets i.e. RealVar 
and RealFix datasets. The dipeptide-based SVM models performed best among the rest of the 
models. The performance of models developed on realistic datasets is summarized in 
supporting information (Additional file 3: Table S6 and Additional file 3: TableS7). 

Models developed using WEKA 

We developed models based on BayesNet, Complement NaiveBayes, NaiveBayes, 
NaiveBayes Multinomial, SMO, IBk (kNN), J48, and RandomForest using WEKA for 
predicting antibody-specific BCEs. After tuning different parameters, we found that out of 
many algorithms of WEKA, three algorithms SMO, kNN and Random Forest performed 
comparatively better as shown in supporting information (Additional file 3: Table S8 and 
Additional file 3: TableS9). Balanced set of patterns for both variable (BalanceVar) and fixed 
(BalanceFix) length were used for all three classes and evaluated using five-fold cross 
validation technique as shown in the supplementary information (Additional file 3: Table S8 
and Additional file 3: Table S9). 

The best classifiers of WEKA achieved maximum accuracy 70.07% for IgG [KNN: 0, 
window size: 0, algorithm: LinearNN search], 81.50% for IgE [SMO, polykernel -C 250007 -
O 1.0, c: 1.0, epsilon: 1.0E-12] and 71.16% for IgA [Randomforest, numFeature: 15, 
numTrees: 10, Seed: 1]. These results were comparable to SVM models implemented using 
SVMlight, where it achieved maximum accuracy of 70.42%, 82.70% and 72.07% for IgG, IgE 
and IgA respectively. 



Performance of model on independent dataset 

In order to evaluate the performance of our models on independent data, we first trained our 
models on 80% of data by ten-fold cross validation and later the performance of the best 
models were evaluated on remaining 20% independent data. We evaluated dipeptide based 
model on all the datasets for all classes of epitopes. The performances of these models are 
summarized in Table 3. On BalanceVar data, model (ten-fold cross validation) developed on 
training data achieved maximum MCC of 0.42, 0.61 and 0.39 while MCC of 0.37, 0.63 and 
0.49 were achieved on evaluation datasets of IgG, IgE and IgA classes respectively. 
Similarly, for BalanceFix data, model performed reasonably well and achieved maximum 
maximum MCC of 0.42, 0.70 and 0.46 on training data while MCC of 0.43, 0.62 and 0.33 
were achieved on evaluation datasets of IgG, IgE and IgA classes respectively. The 
performance of every ten fold cross validation model on the evaluation set was comparable to 
that of five fold cross validation model made on main data. Taken all these results together, it 
can be speculated that our model performed consistently well, and high accuracy is not due to 
over optimization. 

Table 3 The performance of dipeptide composition based SVM models, evaluated using 
ten-fold cross validation on training data (80%) and independent validation on 
independent data (20%) on BalanceEval (BalanceFix & BalanceVar) dataset 

Dataset  Mode Data size ACC MCC  AUC 

BalanceVar IgG Training 6063 70.88 0.42 0.76 

Evaluation 1519 68.24 0.37 0.74 

IgE Training 1873 80.53 0.61 0.87 

Evaluation 468 81.49 0.63 0.88 

IgA Training 322 69.60 0.39 0.75 

Evaluation 80 74.69 0.49 0.79 
BalanceFix IgG Training 4893 70.87 0.42 0.76 

Evaluation 1223 71.67 0.43 0.78 
IgE Training 1524 85.04 0.70 0.90 

Evaluation 381 80.97 0.62 0.86 
IgA Training 213 73 0.46 0.80 

Evaluation 54 66.67 0.33 0.72 

Implementation and utility of IgPred 

We have developed a user-friendly web server ‘IgPred’ (Figure 4) for predicting antibody-
specific BCEs. A number of useful tools have been integrated to IgPred, and their 
descriptions is as follows: 

Figure 4 Schematic representation of IgPred webserver. 

(i) Epitopes in peptides: This tool allows users to predict antibody-specific epitopes in their 
peptide sequences. User can select either variable length, or fixed length peptides option 
provided at server. In case of variable length peptides, the models were built on variable 
length data. Here, server allows users to submit multiple peptides in FASTA format for 
predicting epitopes. In case of fixed length peptides, the models were developed on fixed 



length data, so on server users may submit multiple peptides of fixed length in FASTA or 
plain format for predicting epitopes. 

(ii)  Epitopes in proteins: This tool allows users to identify antigenic regions (BCEs) in 
protein sequences, which can induce particular class of Ab. There are two options for 
users as described above. First option is mapping with variable length, and other is 
mapping with fixed length window. 

(iii)  Mapping with experimental data: This tool allows users to map experimentally verified 
class-specific BCEs on user’s antigen sequence. 

(iv) MotifScan: This module is designed to scan Ab class-specific motifs in an antigen 
sequence provided by the users. These motifs were derived from experimentally validated 
BCEs that induce IgG, IgE and IgA Abs using MEME/MAST software as mentioned in 
method. 

(v) Similarity search: This option allows users to search known (experimentally validated) 
BCEs in their antigen sequence using Smith-Waterman similarity search algorithm. 

In the prediction tools, users can select an SVM threshold for the class of antibody that is 
going to be generated. We suggest that if high confidence in prediction is needed, user should 
select high threshold value, but at the same time sensitivity of the prediction will be 
compromised. The results can be downloaded immediately or can be delivered by email. The 
common gateway interface (CGI) script for IgPred was written using PERL 5.03. IgPred is 
freely available at http://crdd.osdd.net/raghava/igpred/ . 

Discussion 

In the past, several methods have been developed for predicting BCEs in an antigen/protein 
sequence from their primary structure [15,34-37]. To the best of authors’ knowledge no 
comprehensive method has been developed so far for predicting class–specific BCEs, except 
few methods developed for IgE inducing allergenic epitopes [17,38,39]. The present study is 
an attempt in the direction to understand differences between the BCEs that induce different 
classes of antibodies like IgG, IgE and IgA. We hypothesized that induction of different 
classes of antibodies (i.e. IgG, IgE and IgA) could be determined by the sequence of an 
epitope. Therefore, to understand this, we first extracted BCEs that induce IgG, IgE and IgA 
types of antibodies from the IEDB database, and then these sequences were systematically 
analyzed. Amino acid and dipeptide composition analysis revealed that the composition of 
certain residues/dipeptides is higher in certain antibody-specific epitopes than the others. In 
addition, few residues are preferred in a particular class suggesting that these residues or 
dipeptides may play an important role in class switching. For example, Pro and Gln are 
significantly dominant in IgA epitopes. Though Pro is usually not a preferred residue in any 
of the regular secondary structures, this residue might be contributing in induction of IgA. 
Based on these observations, it is clear that the composition of sequence (residue or 
dipeptide) can be used to discriminate epitopes of different class. Therefore, we developed 
models using amino acid and dipeptide composition as input features. As shown in results 
section, models based on dipeptide were able to classify the epitope of different classes with 
reasonably high accuracy. All models were evaluated using both threshold dependent and 
independent parameters. In addition to SVM models, we also developed models using various 
modules of WEKA package. It was observed that models based on classifier SMO, kNN and 
Random Forest perform better than other classifiers of WEKA. It was also observed that 
overall SVM-based models implemented using SVMlight performed better than models 
developed using WEKA as explained in results section. 



We further developed SVM model using binary profiles of patterns as input features. In 
addition, we also developed models using various other features like PCP, CTD and AAP, 
but none of the methods achieved accuracy higher than dipeptide-based models. The 
performance of dipeptide-based model were also evaluated by ten-fold cross validation and 
performance was almost similar to five-fold. We evaluated the performance of ten-fold cross 
validation models on independent datasets and achieved reasonable accuracy (as mentioned 
in the result section). Our results suggest that performance of our models is not due to the 
over optimization; thus our method will be useful and effective in real life. 

In our study, we used one vs. rest approach for creating datasets. It means for developing 
models for predicting IgA epitopes; we used IgA epitopes as positive set and the rest of the 
epitopes (IgE, IgG and non-BCE) as negative set. However, we have not used one vs rest 
approach for prediction, it means our predictions are not exclusive prediction for a single 
class and our models may predict a peptide inducing for more than one class of antibodies 
based on prediction score. In a situation where a peptide has equal score for two models then 
it can be assigned to both the classes if the score for both classes is more than the threshold. 
The dimensions provided in IgPred webserver enable users to determine the potency of any 
antigen to induce systemic, allergic or mucosal Ab immune response beforehand. 

Conclusion 

In the present study, we have made an attempt to establish a relation between an antigenic 
amino acid sequence and its tendencies to generate systemic (IgG), allergic (IgE) and 
mucosal (IgA) type of Ab response. For the first time, in silico models have been developed 
for predicting class-specific BCEs. We have implemented our methods in the form of a web 
server -IgPred. We anticipate that IgPred will be beneficial in designing a better vaccine and 
immunotherapy, with most appropriate effector function, and several other clinical 
applications. 

Methods 

Dataset creation 

In this study, datasets were derived from B-cell assays of human and mouse, which were 
extracted from Immune Epitope Database (IEDB) (http://www.iedb.org/). Of these 
sequences, B-cell assay positive epitopes were considered as BCEs (positive examples) and 
B-cell negative epitopes were considered as non-BCEs (negative examples). Since these 
sequences are of variable length (from 4–100 amino acids), only non- redundant (unique) 
sequences having a length between 4 to 50 amino acids were taken. These epitopes were 
divided into three classes on the basis of antibody heavy chain (IgG, IgE and IgA) reported in 
the IEDB database. Finally, we obtained 11981, 2341, 403 and 22835 sequences for IgG, IgE, 
IgA specific BCEs and non-BCEs respectively. Non-BCEs are entirely different from the 
IgG, IgE and IgA specific BCEs and nowhere present in positives. Therefore, we treated it as 
a separate class. From the above data, we have derived following datasets for developing 
various models. The approach for developing datasets (BCEs and non-BCEs) and selecting 
features has been adopted from the previous study by our group [35]. In this study, authors 
developed a method, which efficiently classify BCEs from non-BCEs. Here, in the present 
study, we wanted to take it to the next step to classify BCEs into class-specific BCEs. The 
overview of dataset creation is summarized in Figure 5. 



Figure 5 Overview of dataset creation. 

(i) Realistic dataset with variable length (RealVar dataset): This dataset consists of total 
14725 BCEs (i.e., 11981 IgG-specific, 2341 IgE-specific, 403 IgA-specific BCEs) and 
22835 non-BCEs of variable lengths (Table 4) 

Table 4 Various datasets used for developing prediction models in the present study 
Dataset type IgG IgE IgA  

Positive Negative Positive Negative Positive Negative 
RealVar 11981 25579 2341 35219 403 37157 
BalanceVar 7598 7598 2341 2341 403 403 
RealFix 9660 22761 1905 30516 267 32154 
BalanceFix 6116 6116 1905 1905 267 267 

 

(ii)  Balanced dataset with variable length (BalanceVar dataset): This dataset was created 
from the above mentioned RealVar dataset. In this dataset, positive examples were 
balanced by taking equal number of negative examples from total negatives. First, to 
avoid biases, 4942 negative examples were picked randomly from non-BCEs (22835), 
which is equivalent to one third of all BCEs (IgG, IgE, and IgA). Subsequently, balanced 
dataset of each class was developed taking equal number of negative examples randomly 
from total negatives (Table 4). Since machine learning technique need fixed length 
pattern and also it is difficult to predict epitopes in an antigen using model trained on 
variable length datasets as length is not fixed for scanning, we have developed two other 
datasets of fixed length. These datasets are derived from the above two datasets. 

(iii)  Realistic dataset with fixed length (RealFix dataset): In order to utilize the full potential 
of machine learning techniques, we fixed the length to 20 residues as most epitopes have 
length up to 20 residues. This has been implemented using extension truncation technique 
as described previously [40,41]. After removing redundant epitopes, we got 9660, 1905, 
267 and 20589 for IgG, IgE, IgA and non-BCEs respectively (Table 4). 

(iv) Balanced dataset with fixed length epitopes (BalanceFix dataset): This dataset was 
generated from RealFix dataset using the same process as described above for creating 
BalanceVar dataset. It consists of 9660, 1905, and 267 BCEs for IgG, IgE, and IgA 
respectively and an equal number of negative examples for the respective class as 
summarized in Table 4. 

(v) Independent dataset: In order to create an independent dataset, 20% sequences were 
randomly picked from BalanceFix (for fixed length) and BalanceVar (for variable length) 
dataset and used as independent dataset. Model was trained on rest 80% sequences using 
ten-fold cross validation and then performance of the optimized model was validated on 
independent dataset. 

One-vs-rest approach for datasets 

We developed models for predicting epitopes inducing different Abs. In order to develop 
model for epitopes inducing a specific class of Ab (e.g. IgA inducing epitopes), we used IgA 
inducing epitopes as positive examples, and the rest of the epitopes belong to other classes 
(e.g., IgE, IgG and non-BCE) as negative examples (Additional file 2: Figure S2). Similarly, 
for developing model for IgG inducing BCEs, IgG-specific BCEs were considered as positive 
examples and the rest of the epitopes from other classes (IgE specific, IgA specific BCEs and 
non-BCEs) were considered as negative examples (Additional file 2: Figure S2). 



Amino acid composition 

Amino acid composition is one of the simplest features, which have been used in the past to 
encapsulate the global information of protein into a fixed length pattern [42,43]. Amino acid 
composition of a peptide is proportional to frequency of each type of residue in a peptide. As 
there are 20 types of residues, so there are 20 types of composition for each peptide. Thus, a 
vector of 20 is used to represent an epitope as described in previous studies [44]. 

Dipeptide composition 

Dipeptide composition is another important feature, which is used to transform the variable 
length of peptides to fixed length feature vectors. Dipeptide compositions have been used in 
earlier studies to classify various classes of peptides [44,45]. Dipeptide composition provides 
information of the pair of residues in contrast to a single residue and provides a fixed pattern 
length of 400. We computed percent of occurrence of each type of dipeptide and used this 
information for developing machine learning models. Following formula has been used for 
computing dipeptide composition of each epitope 

( )
( ) 100

Total number of Dip i
Percentage of Dip i

Total number of all possible Dips
= ×  (1) 

where Dip(i) is a dipeptide i out of 400 dipeptides. 

To analyse the differences between dipeptide composition among all classes of epitopes 
(IgG-, IgE-, IgA-inducing and Non-BCE), we performed significance test (Welch’s t-test). 
For example, we first calculated average of dipeptide compositions (400 dipeptides) for both 
IgG(+) data and IgG(−) data. Next, we calculated the difference of means in both the datasets 
for each of the 400 dipeptides for IgG-, IgE-, IgA-inducing BCEs and non-BCEs 
respectively. We also computed whether the difference in the mean of dipeptide composition 
is significant or not using t-test. Several dipeptides show a significant difference in 
composition between positive and negative dataset of each class (Additional file 1). 

Binary profile of patterns 

We used binary profiles of patterns for fixed length datasets where each amino acid was 
presented by a vector of dimension 20 as described previously [44]. Since the length of 
epitopes was 20, a pattern of window length 20 was represented by a vector of dimension (20 
× 20). In the past, binary profile has been used for developing prediction models [44-47]. 

Physico-chemical properties 

It is well known that function of a peptide is governed by its primary sequence and their 
physico-chemical properties. Therefore, in the present study, we have selected ten commonly 
used physico-chemical properties. These properties include hydrophobicity, bulky side chain, 
net-hydrogen, stearic hindrance, amphipathicity, hydrophilicity, charge, pI value, etc. [48,49]. 



MEME/MAST 

MEME/MAST module has been used previously for discovering novel motifs in various 
classes of proteins and peptides [44]. We have adopted the similar strategy in the present 
study for discovering various motifs in epitopes using MEME/MAST module. This module 
comprises of two programs: one is MEME, which is used to discover motifs, and other is 
MAST, used for searching motifs [50,51]. In the present study, we have used MEME for 
discovering motifs in IgG, IgE and IgA inducing epitopes and subsequently, these discovered 
motifs were used further for identifying epitopes using MAST. 

Composition-transition-distribution (CTD) 

CTD has been used in several machine learning algorithms [33] to get a fixed length vector 
from variable length data. Each peptide sequence was mapped into a string defined by three 
symbols. These symbols were resulted from grouping of all amino acids into three groups, on 
the basis of certain physico-chemical properties. For every physico-chemical property, we got 
a string of 1, 2 and 3 symbols; three feature given by composition, three feature given by the 
percent frequency of i followed by j or j followed by i (transition) and five features per 
symbol. Thus total 15 features representing the fractions of the entire sequence where the 
first, 25, 50, 75, and 100% of the candidate symbol are contained in string (distribution). 

Amino acid pairs propensity scale 

It has been reported that some amino acid pairs found more frequently in BCEs than in non-
BCEs. Keeping this in mind, we developed an AAP propensity scale as reported previously 
[33,34]. The frequencies were calculated from positive and negative data sequences [52]. 
AAP features can be viewed as dipeptide composition features weighted by the amino acid 
propensity of each dipeptide. The final vector size in AAP is 400 . 

Software for extraction of features and implementing machine-learning 
techniques 

The calculations for different features have been carried out using in-house PERL scripts and 
R package (2.10.1) scripts. Plots were made using SigmaPlot 10.0. We used SVM_Light 
software (http://svmlight.joachims.org/) for developing SVM based models. SVM is freely 
available for academic use and has been used in number of research papers [29,53,54]. We 
also used WEKA 3.2 package (http://www.cs.waikato.ac.nz/ml/WEKA/) to develop various 
types of models. We used nine algorithms of WEKA package namely BayesNet, 
Complement NaiveBayes, NaiveBayes, NaiveBayes Multinomial, SMO, IBk, J48, and 
RandomForest [55]. 

Evaluating the performance of models 

In the present study, we used five-fold cross validation technique to evaluate the performance 
of our models developed for predicting antibody-specific epitopes. In this technique, one fifth 
of total data is used for testing and remaining data is used for training the model and this 
process is repeated till all instances are evaluated. Similarly, we also run ten-fold cross 
validation, which was preceded by evaluation on independent dataset to validate the 
performance of the model. In addition, in order to evaluate the performance of models, we 



included both threshold dependent and threshold independent parameters. In case of threshold 
dependent parameters, we used standard parameters like sensitivity (Sen), specificity (Spe), 
Overall accuracy (Acc) and Matthews’s correlation coefficient (MCC) using following 
equations. 

100
TP

Sens
TP FN

= ×
+  

(2) 

100
TN

Spec
TN FP

= ×
+  

(3) 

100
TP TN

Acc
TP FP TN FN

+= ×
+ + +  

(4) 

( )( ) ( )( )

[ ][ ][ ][ ]

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

−=
+ + + +

 (5) 

[TP = true positive; FN = false negative; TN = true negative; FP = false positive; Sens = 
Sensitivity; Spec = Specificity; Acc = Accuracy] 

To evaluate the performance of models using threshold independent parameters, AUC (Area 
under curve curve) have been calculated with the help of PERF software. 

Response and revision of the manuscript in light of the reviewer comments: 

Reviewers’ comments on the original manuscript 

We are grateful to the reviewers’ for their useful thoughts and suggestions. We have 
incorporated all the suggestions of the reviewers in our manuscript. Here, we are addressing 
all comments of reviewer’s point-by-point. 

Reviewer number 1: Dr. M Michael Gromiha 

In this work, authors have developed a method for predicting different types of B-cell 
epitopes. They have utilized several features such as amino acid and dipeptide compositions, 
physicochemical properties and binary profiles. The method showed a correlation coefficient 
in the range of 0.44 to 0.70 to various types of epitopes. Further, a web server has been 
developed for application purposes. 

Reviewer comments: The composition analysis shows the preference of Pro in IgA. Pro is 
usually not a preferred residue in any of the regular secondary structures. The higher 
occurrence of Pro may be discussed. Further, the abundance of Cys in IgE may be 
commented. 

Authors’ response: It has been shown in previous studies [56,57] that most of residues in 
BCEs fall in non-regular (coil or tight-turns) secondary structure. In revised paper, we have 
discussed the preference of Pro and Cys in IgA- and IgE-inducing epitopes respectively. 

Reviewer comments: The residue pair preference showed the dominance of Pro with other 
residues only in IgG and IgA and not in IgE. This may be discussed. 



Authors’ response: This is the first study, where types of residues preferred in the different 
classes of BCEs have been calculated. We have no idea (biological significance of 
observation) why Pro with other residues (pair) is more abundant in IgG- and IgA- inducing 
epitopes and not in IgE-inducing epitopes. This is an interesting point to be studied in the 
future for understanding the above observation. 

Reviewer comments: It has been shown that IgE can be predicted with higher accuracy than 
other epitopes. The reason may be explained. 

Authors’ response: It has been observed that IgE-inducing epitopes are more conserved in 
comparison to other classes of epitopes, which could be responsible for higher accuracy. 

Reviewer comments: The expansions for the parameters used in SMO may be given. 

Authors’ response: As suggested by the reviewer, in revised version of the manuscript, we 
have described SMO parameters in detail. 

Reviewer comments: It is necessary to give the procedure used to remove the redundancy. 

Authors’ response: In revised manuscript, the procedure to remove the redundant or 
duplicate peptides has been described. 

Reviewer comments: Quality of written English: Acceptable 

Reviewer number 2: Dr Christopher Langmead (nominated by Dr Robert 
Murphy) 

The manuscript presents an SVM-based method for predicting antibody-specific epitopes. 
Three classes were considered: IgA, IgE, IgG. Features included AA composition, dipeptide 
composition, and physio-chemical properties. Training data were obtained from the IEDB, 
and machine-learning methods were performed using either SVMLight or WEKA. A website 
for performing a variety of tasks associated with epitope prediction is also reported. 

The study has some flaws that need to be addressed. 

Reviewer comments: The results obtained with SVMLight are the result of tuning parameters, 
whereas the results obtained for the strawman models are the result of using WEKA’s default 
parameters. To be fair, the authors must do parameter searches for these. 

Authors’ response: We agree with the reviewer, in our revised manuscript, we have reported 
the performances of strawman models after parameter optimization (see Additional file 3: 
Table S1). 

Reviewer comments: Did the authors try a string kernel for the SVMLight experiments? It 
would seem appropriate, given the nature of the data. 

Authors’ Response: In the present study, we have tried only three kernels of SVMLight 
namely Linear, Polynomial and Radial basis. It is possible that string kernel may perform 
better than above kernels, but unfortunately, our group does not have expertise in 



optimization of string kernel parameters. In addition, previous studies have indicated that 
radial basis is an efficient kernel for discriminating various types of peptide/epitopes. 

Reviewer comments: The authors need to explain what they do in the event of a tie in their 
one-vs-rest approach to multi-class classification. 

Authors’ response: In this study, we used one verses rest approach for creating datasets 
only, and not for predicting epitopes, for example, to develop prediction model for IgA-
inducing epitopes, we created a dataset containing IgA-inducing epitopes as positive 
examples and remaining epitopes (IgE-, IgG-inducing epitopes and non-BCEs) as negative 
examples. We computed performance of models based on the threshold, for example, in IgA 
model if a peptide having SVM score above the threshold then it is assigned as IgA-inducing 
epitope. We have not used exclusive prediction for a single class and our predictors may 
predict a single peptide inducing more than one class of antibodies. Thus, it does not matter if 
a peptide has equal score for two models, and it may be predicted in two classes if the SVM 
score is more than the threshold. In our revised manuscript, we have clarified this point. 

Reviewer comments: Since the matrics for their method (MCC) are apparently worse than 
published methods for (antibody-neutral) epitope prediction, the authors should evaluate a 
two-stage classification process whereby an antibody-neutral classification is performed, and 
then the positive results are passed to their method. This would simplify the learning task 
because their method would not have to learn to distinguish non-BCEs from BCEs. 

Authors’ response: The aim of this study is to predict antibody specific BCEs instead of 
BCEs. For the first time, we have developed models for predicting antibody class specific-
BCEs that may induce three types of antibodies (IgA, IgE and IgG). Thus, it is not possible to 
compare this method with the previous methods as earlier methods have been developed for 
predicting BCEs only. 

Reviewer comments: The manuscript also has some flaws that need to be addressed. 
Primarily, they should cite and discuss other SVM-based methods for epitope prediction. 
Additionally, it is not clear whether the authors understand that SMO is, in fact, an algorithm 
for learning SVMs. It seems strange to simply list SMO among the non-SVM algorithms. 

Typos: There are a number of typos that can be identified by using a spell-checker. The 
authors meant to say that there are five primary isotypes at the end of the first paragraph of 
the Background section, not six (note: they correctly list the five classes). 

Authors’ response: As suggested by reviewer, we have cited other SVM-based methods 
published earlier for epitope prediction. We have also edited the manuscript as per reviewer’s 
suggestion. Since there are different versions of Support Vector Machines (like SVMlight and 
SMO), we tried one from SVMlight and other from WEKA package (SMO). As the reviewer 
has advised, we have placed SMO in SVM algorithms from non-SVM algorithms. 

Reviewer comments: Quality of written English: Needs some language corrections before 
being published 

Authors’ Response: We have tried our best to improve the quality of english in revised 
version of the manuscript. 



Reviewer number: 3 

Report form: 

OK 

Reviewer comments: Quality of written English: Needs some language corrections before 
being published 

Referee 3: Dr Lina Ma (nominated by Dr Zhang Zhang) 

This manuscript presented a method to predict B-cell epitopes that can induce a specific class 
of antibody and attempted to understand the relation between primary sequence of epitopes 
and the class of antibodies. My comments are listed as follows. 

Reviewer comments: It is noticed that one paper published by the authors, entitled 
“Improved Method for Linear B-Cell Epitope Prediction Using Antigen’s Primary 
Sequence”, describes the method of B-cell epitope prediction”. Is the method presented here 
similar with that in the published one? As the authors used non-BCEs as a negative control in 
both papers, I wonder what is the correlation between this manuscript and the published one 
and it might be better to describe it clearly or discuss any issue caused. 

Authors’ response: As indicated by reviewer, recently our group has published a paper [35] 
describing a method developed for predicting linear B-cell epitopes (in revised version of this 
paper, we have cited and discussed our recent paper). In the past, other methods have also 
been developed for predicting B-cell epitopes (including our recent paper [35]). In the present 
paper, for the first time, we have developed a method for predicting epitopes that can induce 
specific class of antibodies. In the revised manuscript, we have clarified the difference 
between IgPred and previous methods. 

Reviewer comments: It is highly recommended that the manuscript describe their results in a 
more clarified and detailed manner. 

a) In Figure 1, it is obvious that Pro and Gln are abundant in IgA inducing epitopes, but I do 
not think that Cys and Glu are dominated in IgE inducing epitopes. In Figure 2, IgA 
inducing epitopes contain more LP, LQ, PF, PQ, PY, QP, QL and QQ dipeptides while the 
IgG inducing epitopes and IgE epitopes do not tend to show a significant difference in any 
dipeptide compositions among the three kinds of epitopes. 

b) Some statistical methods should be used to compare the difference between epitopes, and 
it is better to list results with significant differences. 

c) Error bars should be added in the histogram of Figures to show deviations. 

Authors’ response: We agree with the reviewer in the points (a, b and c) and after getting 
valuable comments from the reviewer, we performed Welch’s t-test for each class of epitopes 
(IgG, IgE, IgA, and non-BCE). As an example, we first calculated average of dipeptide 
compositions (400 dipeptides) for both IgG(+) data and IgG(−) data. Further with the help of 
t-test, we calculated the difference of means of both the datasets for each of 400 dipeptides. 
Looking at the large number of dipeptides (400), we removed Figure 2 (showing dipeptide 
composition as bar graph) and provided the dipeptide composition of all the three classes 



with their negatives along with p-value in separate Additional file 1. With such analysis, it 
can be observed (in the Supplementary excel sheet) that significant dipeptides such as AS, 
GP, WK, YR, etc. are found to be dominant in IgG-inducing epitopes; IQ LA, NA, NE, etc. 
are frequent in IgE-inducing epitopes; and ED, FP, PF, PQ, PY, QP, etc. are prevailing in 
IgA-inducing epitopes. We have also discussed these observations in the revised manuscript. 

As per reviewer’s suggestion, we performed Welch-s t-test on dipeptide composition data to 
look at the significant difference between positive and negative data of each class. 

We have also added error bars to the amino acid composition bar graph as per reviewer’s 
recommendation. 

d) In Figure 1, non-BCEs were used as a negative control. It is better that negative control is 
also used in Figure 2. Similar problems also exist in sections of “Residue preference”, 
“Length of epitopes”, “Physico-chemical property analysis”, “Motifs analysis”. It is better 
that negative control (non-BCEs) should be used consistently with Figure 1. 

Authors’ response: As suggested by the reviewer, we have added AAC of non-BCE in 
Figure 1. We replaced Figure 2 with excel sheet showing DPC of 400 dipeptides (Additional 
file 1). 

e) The results of ACC, AUC, and MCC are listed in tables, what about sensitivity and 
specificity 

Authors’ response: Since there were about six features for each of the three classes of 
epitopes, we did not include sensitivity and specificity in the result tables. After getting 
suggestion of the reviewer, we created additional tables (Table S2 and S4) containing 
sensitivity and specificity and incorporated as supplementary information (Additional file 3: 
Table S2 and Additional file 3: Table S4). 

f) What does AAP mean? What is the difference between AAP and DPC? 

Authors’ response: AAP (Amino acid propensity) is a feature, which is derived from DPC 
of the datasets. This feature has been exploited in previous B-cell epitope prediction 
algorithms [33,40,41,43]. This represents the DPC of a protein/amino acid sequence weighted 
by the amino acid propensity of each dipeptide in a matrix made by both positive and 
negative data. We have edited the manuscript by describing it in detail. 

Reviewer comments: Discussion Section- At the end of the first paragraph, it is concluded 
that SVM performed better than WEKA. This is an important conclusion of this paper, which 
should be explained in detail. 

Authors’ response: As we can observe in the supplementary tables S8 and S9, algorithms of 
WEKA (IBk, Random Forest and SMO) could perform reasonably well with DPC as input 
feature. At the same time, using SVMlight with DPC as input feature, the performances of 
different models were significantly better than those of WEKA as a whole. As suggested by 
the reviewer, we have discussed the performances of SVM and WEKA modules in detail in 
the discussion section. 



Reviewer comments: At the end of paragraph 2, please explain “reasonable accuracy” in 
detail? 

Authors’ response: As suggested by the reviewer, we have explained the accuracies of our 
models on independent dataset in detail. For BalanceVar data, model (ten-fold cross 
validation) developed on training data achieved maximum MCC of 0.42, 0.61 and 0.39 while 
MCC of 0.37, 0.63 and 0.49 were achieved on evaluation datasets of IgG, IgE and IgA 
classes respectively. Similarly, for BalanceFix data, model performed well and achieved 
maximum MCC of 0.42, 0.70 and 0.46 on training data while MCC of 0.43, 0.62 and 0.33 
were achieved on evaluation datasets of IgG, IgE and IgA classes respectively. We have also 
discussed this issue in the revised manuscript as per reviewer’s suggestion. 

Reviewer comments: IgA inducing epitopes are quite different from IgE or IgG inducing 
epitopes in AAC and AAP comparison. However, SVM models for predicting IgA inducing 
epitopes do not seem to perform better than that for predicting IgE and IgG inducing 
epitopes. This is really confusing for me, or it might be better to provide explanations for this 
result. 

Authors’ response: We agree with the reviewer that IgA epitopes are quite different. We 
examined the performance of prediction of IgA inducing epitopes, as well as the reason for 
the poor performance of these models. It could be due to the fact that IgA inducing epitopes 
are very limited in comparison to non-IgA inducing epitopes. It is a well-known fact that 
machine learning techniques, particularly SVM-based models perform poor especially when 
positive and negative dataset is unbalanced. We have mentioned these points in the revised 
manuscript. 

Reviewer comments: As there have been methods for predicting IgE inducing epitopes, 
what is the difference between previous methods and the models described in the manuscript? 

Authors’ response: We agree with the reviewer that there are methods developed for 
prediction of IgE inducing epitopes (one is from our own group [17]). The current study can 
be considered as an extension of the previous studies. This study offers researcher to compare 
the potential of an epitope to induce systemic type (IgG), mucosal type (IgA) and 
inflammatory type (IgE) of antibody immune response. Thus in contrast to the predictors of 
IgE inducing epitopes, our web server is more comprehensive with reference to antibody 
immune response. 

Reviewers’ comments on the revised manuscript 

Referee 3: Dr Lina Ma (nominated by Dr Zhang Zhang) 

Reviewer comments: The authors have answered all the questions seriously, while there are 
still some mistakes in the revised version. It is better that the authors check the manuscript 
carefully before submission. 

Section “Composition analysis”, paragraph 1, line 6, the word “Glu” should be Gln. Section 
“Discussion”, paragraph 1, lines 19–20, this sentence seems incomplete. 

The authors say that they have mentioned these points in the revised manuscript in answering 
my third question of Section “Discussion”, while I did not find where they have mentioned. 



Authors’ response: We are thankful to the reviewer for appreciating our efforts. As 
suggested by the reviewer, we have edited the manuscript and incorporated all the 
suggestions. The performance of WEKA has been discussed in result and discussion section 
after getting the comments of reviewer. 
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