==== Reference: Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, et al. (2017) THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS ONE 12(7) e0181748.====

Detailed description page of THPdb

This page displays user query in tabular form.

1206 details
Primary information
ThPP IDTh1027
Therapeutic Peptide/Protein NameInsulin Regular
SequenceA-chain:GIVEQCCTSICSLYQLENYCN, B-chain:FVNQHLCGSHL view full sequnce in fasta
Functional ClassificationIa
Molecular Weight5.808
Chemical FormulaC257H383N65O77S6
Isoelectric Point5.39
Hydrophobicity0.218
Melting Point (℃)81
Half LifeN.A.
DescriptionInsulin regular is a 51 residue peptide hormone, composed of two amino acid chains covalently linked by disulfide bonds. The structure is identical to native human insulin. Recombinant insulin is synthesized by recombinant DNA techncology. Inserting the human insulin gene into the Escherichia coli bacteria or Saccharomyces cerevisiae produces insulin for human use.
Indication/DiseaseIndicated as an adjunct to diet and exercise to improve glycemic control in adults and children with type 1 and type 2 diabetes mellitus.
PharmacodynamicsInsulin regular is a short-acting insulin. When subcutaneously administered, the onset of action (as evidenced by a decrease in glucose level) occurs 30 minutes post-dose. Maximal effect occurs between 1.5 and 3.5 hours post-dose. The glucose-lowering effect occurs 8 hours post-dose. Compared to other rapid-acting insulin analogs, insulin regular has a slower onset of action and longer duration of action.
Mechanism of ActionThe primary activity of insulin is the regulation of glucose metabolism. Insulin promotes glucose and amino acid uptake into muscle and adipose tissues, and other tissues except brain and liver. It also has an anabolic role in stimulating glycogen, fatty acid, and protein synthesis. Insulin inhibits gluconeogenesis in the liver. Insulin binds to the insulin receptor (IR), a heterotetrameric protein consisting of two extracellular alpha units and two transmembrane beta units. The binding of insulin to the alpha subunit of IR stimulates the tyrosine kinase activity intrinsic to the beta subunit of the receptor. The bound receptor is able to autophosphorylate and phosphorylate numerous intracellular substrates such as insulin receptor substrates (IRS) proteins, Cbl, APS, Shc and Gab 1. These activated proteins, in turn, lead to the activation of downstream signaling molecules including PI3 kinase and Akt. Akt regulates the activity of glucose transporter 4 (GLUT4) and protein kinase C (PKC) which play a critical role in metabolism and catabolism.
ToxicityHypoglycemia is caused due to insulin toxicity.
MetabolismPredominantly cleared by metabolic degradation via a receptor-mediated process.
AbsorptionGenerally well absorbed.
Volume of Distribution0.15 L/kg
ClearanceN.A.
CategoriesAntidiabetic Agents
Patents NumberN.A.
Date of IssueN.A.
Date of ExpiryN.A.
Drug InteractionN.A.
TargetN.A.
Information of corresponding available drug in the market
Brand NameN.A.
CompanyN.A.
Brand DiscriptionN.A.
Prescribed forN.A.
Chemical NameN.A.
FormulationN.A.
Physcial AppearnceN.A.
Route of AdministrationN.A.
Recommended DosageN.A.
ContraindicationN.A.
Side EffectsN.A.
Useful Linkhttp://www.rxlist.com/humulin-r-drug.htm
PubMed ID22960692
3-D StructureTh1027 (View) or (Download)