==== Reference: Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, et al. (2017) THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS ONE 12(7) e0181748.====

Detailed description page of THPdb

This page displays user query in tabular form.

1795 details
Primary information
ThPP IDTh1190
Therapeutic Peptide/Protein NameImmune Globulin Human
SequenceIGG1: PSALTQPPSASGSLGQSVTISCTGTSSDVGGYNYVSWYQQHAGK view full sequnce in fasta
Functional ClassificationIIIb
Molecular Weight142682.3
Chemical FormulaC6332H9826N1692O1980S53
Isoelectric PointNA
HydrophobicityNA
Melting Point (℃)NA
Half Life>20 hours (mammalian reticulocytes, in vitro).
DescriptionIntravenous immunoglobulin (IVIg) is a mixture of IgG1 and other antibodies derived from healthy human plasma via Cohn fractionation. The purification process includes cold alcohol fractionation, polyethylene glycol precipitation, and ion exchange chromatography. IVIg contains the same distribution of IgG antibody subclasses as is found in the general human population. IgG subclasses are fully represented in the following proportions: 70.3% IgG1, 24.7% IgG2, 3.1% IgG3, and 1.9% IgG4. IVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders.
Indication/DiseaseIVIg is used in the treatment of immunodeficiencies, as well as autoimmune and inflammatory disorders. These indications includes idiopathic thrombocytopenic purpura, Kawasaki disease, hypogammaglobulinemia, B cell chronic lymphocytic leukemia, bone marrow transplant complications, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy (CIDP), multiple sclerosis, rheumatoid arthritis, myesthenia gravis, Wiskott–Aldrich syndrome and inflammatory skin diseases.
PharmacodynamicsUsed as a replacement therapy in inherited humoral immunodeficiency disorders such as severe combined immunodeficiency syndrome, x-linked agammaglobulinemia, and Wiskott-Aldrich Syndrome. The immunoglobulins target, bind and kill bacterial cells as well as viral particles. IgG is the monomeric immunoglobulin of which there are four subclasses (IgG1, IgG2, IgG3 and IgG4) in differing abundances (66%, 23%, 7% and 4%). IgAs represent about 15% of the immunoglobulins in the blood. These target inhaled or ingested pathogens.
Mechanism of ActionIVIg interacts with a number of different components of the immune system, including cytokines, complement, Fc receptors and several cell surface immunocompetent molecules. IVIg also impacts different effector cells of the immune system (B and T lymphocytes, dendritic cells, etc.) and regulates a wide range of genes. Its main mechanism of actions are believed to be Fc-dependent and F(ab')2-dependent. IVIg competitively blocks gamma Fc receptors, preventing the binding and ingestion of phagocytes and suppressing platelet depletion. IVIg contains a number of different antobodies, which prevent infection by attaching to the surface of invading pathogens and aiding in their disposal before they can infect cells. Antibodies remove pathogens via complement activation, agglutination or precipitation, pathogen receptor blocking, macrophage “tagging” or neutralization (via binding) of pathogen toxins. Intact IVIg and F(ab′)2 fragments of IVIg can also neutralize the activity of various autoantibodies. By triggering the production of interleukin-1 receptor antagonist, IVIg modulates of the production of cytokines and cytokine antagonists. It also prevents the generation of the C5b-9 membrane attack complex and subsequent complement-mediated tissue damage by binding active complement components.
ToxicityNA
MetabolismNA
AbsorptionNA
Volume of DistributionNA
ClearanceNA
CategoriesImmunologic Factors; Immunosuppressive Agents; Anti-Infective Agents
Patents NumberNA
Date of IssueNA
Date of ExpiryNA
Drug InteractionEstradiol may increase the thrombogenic activities of Intravenous Immunoglobulin; Estropipate may increase the thrombogenic activities of Intravenous Immunoglobulin.
TargetHigh affinity immunoglobulin gamma Fc receptor I; High affinity immunoglobulin gamma Fc receptor IB; Low affinity immunoglobulin gamma Fc region receptor II-a; Low affinity immunoglobulin gamma Fc region receptor II-b; Low affinity immunoglobulin gamma Fc region receptor II-c; Low affinity immunoglobulin gamma Fc region receptor III-A; Low affinity immunoglobulin gamma Fc region receptor III-B; Complement C3; Complement C4-A; Complement C4-B; Complement C5.
Information of corresponding available drug in the market
Brand NameHyqvia
CompanyBaxalta Us Inc.
Brand DiscriptionHYQVIA is a dual vial unit with one vial of Immune Globulin Infusion 10% (Human) and one vial of Recombinant Human Hyaluronidase.
Prescribed forHYQVIA is an immune globulin with a recombinant human hyaluronidase indicated for the treatment of Primary Immunodeficiency (PI) in adults. This includes, but is not limited to, common variable immunodeficiency (CVID), X-linked agammaglobulinemia, congenital agammaglobulinemia, Wiskott-Aldrich syndrome, and severe combined immunodeficiencies
Chemical NameNA
Formulation 160 U/mL
Physcial AppearnceLiquid
Route of AdministrationIntravenous infusion
Recommended DosageAdminister HYQVIA at 300 to 600 mg/kg at 3 to 4 week intervals, after initial ramp-up.
ContraindicationIn patients who have had a history of anaphylactic or severe systemic reactions to the administration of IgG.IgA deficient patients with antibodies to IgA and a history of hypersensitivity. patients with known systemic hypersensitivity to hyaluronidase or Recombinant Human Hyaluronidase of HYQVIA.
Side EffectsCommon adverse reactions observed in clinical trials in > 5% of subjects were: local reactions, headache, antibody formation against recombinant human hyaluronidase (rHuPH20), fatigue, nausea, pyrexia, and vomiting.
Useful Linkhttp://www.rxlist.com/hyqvia-drug.htm
PubMed ID20970960, 17911465, 16998749, 16876910
3-D StructureTh1190 (View) or (Download)